Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE sbcice_cice
!!======================================================================
!! *** MODULE sbcice_cice ***
!! To couple with sea ice model CICE (LANL)
!!=====================================================================
#if defined key_cice
!!----------------------------------------------------------------------
!! 'key_cice' : CICE sea-ice model
!!----------------------------------------------------------------------
!! sbc_ice_cice : sea-ice model time-stepping and update ocean sbc over ice-covered area
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
# if defined key_qco
USE domqco ! Variable volume
# else
USE domvvl ! Variable volume
# endif
USE phycst, only : rcp, rho0, r1_rho0, rhos, rhoi
USE in_out_manager ! I/O manager
USE iom, ONLY : iom_put,iom_use ! I/O manager library !!Joakim edit
USE lib_mpp ! distributed memory computing library
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE daymod ! calendar
USE fldread ! read input fields
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
USE sbcblk ! Surface boundary condition: bulk
USE sbccpl
USE ice_kinds_mod
USE ice_blocks
USE ice_domain
USE ice_domain_size
USE ice_boundary
USE ice_constants
USE ice_gather_scatter
USE ice_calendar, only: dt
USE ice_state, only: aice,aicen,uvel,vvel,vsno,vsnon,vice,vicen
# if defined key_cice4
USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, &
strocnxT,strocnyT, &
sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_gbm, &
fresh_gbm,fhocn_gbm,fswthru_gbm,frzmlt, &
flatn_f,fsurfn_f,fcondtopn_f, &
uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, &
swvdr,swvdf,swidr,swidf
USE ice_therm_vertical, only: calc_Tsfc
#else
USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, &
strocnxT,strocnyT, &
sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_ai, &
fresh_ai,fhocn_ai,fswthru_ai,frzmlt, &
flatn_f,fsurfn_f,fcondtopn_f, &
uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, &
swvdr,swvdf,swidr,swidf
USE ice_therm_shared, only: calc_Tsfc
#endif
USE ice_forcing, only: frcvdr,frcvdf,frcidr,frcidf
USE ice_atmo, only: calc_strair
USE CICE_InitMod
USE CICE_RunMod
USE CICE_FinalMod
IMPLICIT NONE
PRIVATE
PUBLIC cice_sbc_init ! routine called by sbc_init
PUBLIC cice_sbc_final ! routine called by sbc_final
PUBLIC sbc_ice_cice ! routine called by sbc
INTEGER :: ji_off
INTEGER :: jj_off
INTEGER , PARAMETER :: jpfld = 13 ! maximum number of files to read
INTEGER , PARAMETER :: jp_snow = 1 ! index of snow file
INTEGER , PARAMETER :: jp_rain = 2 ! index of rain file
INTEGER , PARAMETER :: jp_sblm = 3 ! index of sublimation file
INTEGER , PARAMETER :: jp_top1 = 4 ! index of category 1 topmelt file
INTEGER , PARAMETER :: jp_top2 = 5 ! index of category 2 topmelt file
INTEGER , PARAMETER :: jp_top3 = 6 ! index of category 3 topmelt file
INTEGER , PARAMETER :: jp_top4 = 7 ! index of category 4 topmelt file
INTEGER , PARAMETER :: jp_top5 = 8 ! index of category 5 topmelt file
INTEGER , PARAMETER :: jp_bot1 = 9 ! index of category 1 botmelt file
INTEGER , PARAMETER :: jp_bot2 = 10 ! index of category 2 botmelt file
INTEGER , PARAMETER :: jp_bot3 = 11 ! index of category 3 botmelt file
INTEGER , PARAMETER :: jp_bot4 = 12 ! index of category 4 botmelt file
INTEGER , PARAMETER :: jp_bot5 = 13 ! index of category 5 botmelt file
TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:), PRIVATE :: png ! local array used in sbc_cice_ice
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: sbcice_cice.F90 14595 2021-03-05 22:36:50Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION sbc_ice_cice_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION sbc_ice_cice_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( png(jpi,jpj,jpnij), STAT=sbc_ice_cice_alloc )
CALL mpp_sum ( 'sbcice_cice', sbc_ice_cice_alloc )
IF( sbc_ice_cice_alloc > 0 ) CALL ctl_warn('sbc_ice_cice_alloc: allocation of arrays failed.')
END FUNCTION sbc_ice_cice_alloc
SUBROUTINE sbc_ice_cice( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE sbc_ice_cice ***
!!
!! ** Purpose : update the ocean surface boundary condition via the
!! CICE Sea Ice Model time stepping
!!
!! ** Method : - Get any extra forcing fields for CICE
!! - Prepare forcing fields
!! - CICE model time stepping
!! - call the routine that computes mass and
!! heat fluxes at the ice/ocean interface
!!
!! ** Action : - time evolution of the CICE sea-ice model
!! - update all sbc variables below sea-ice:
!! utau, vtau, qns , qsr, emp , sfx
!!---------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
INTEGER, INTENT(in) :: ksbc ! surface forcing type
!!----------------------------------------------------------------------
!
! !----------------------!
IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! Ice time-step only !
! !----------------------!
! Make sure any fluxes required for CICE are set
IF ( ksbc == jp_flx ) THEN
CALL cice_sbc_force(kt)
ELSE IF( ksbc == jp_purecpl ) THEN
CALL sbc_cpl_ice_flx( kt, fr_i )
ENDIF
CALL cice_sbc_in ( kt, ksbc )
CALL CICE_Run
CALL cice_sbc_out ( kt, ksbc )
IF( ksbc == jp_purecpl ) CALL cice_sbc_hadgam(kt+1)
ENDIF ! End sea-ice time step only
!
END SUBROUTINE sbc_ice_cice
SUBROUTINE cice_sbc_init( ksbc, Kbb, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_init ***
!! ** Purpose: Initialise ice related fields for NEMO and coupling
!!
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: ksbc ! surface forcing type
INTEGER, INTENT( in ) :: Kbb, Kmm ! time level indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp1, ztmp2
REAL(wp) :: zcoefu, zcoefv, zcoeff ! local scalar
INTEGER :: ji, jj, jl, jk ! dummy loop indices
!!---------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)'cice_sbc_init'
ji_off = INT ( (jpiglo - nx_global) / 2 )
jj_off = INT ( (jpjglo - ny_global) / 2 )
#if defined key_nemocice_decomp
! Pass initial SST from NEMO to CICE so ice is initialised correctly if
! there is no restart file.
! Values from a CICE restart file would overwrite this
IF( .NOT. ln_rstart ) THEN
CALL nemo2cice( ts(:,:,1,jp_tem,Kmm) , sst , 'T' , 1.)
ENDIF
#endif
! Initialize CICE
CALL CICE_Initialize
! Do some CICE consistency checks
IF( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN
IF( calc_strair .OR. calc_Tsfc ) THEN
CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=F and calc_Tsfc=F in ice_in' )
ENDIF
ELSEIF(ksbc == jp_blk) THEN
IF( .NOT. (calc_strair .AND. calc_Tsfc) ) THEN
CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=T and calc_Tsfc=T in ice_in' )
ENDIF
ENDIF
! allocate sbc_ice and sbc_cice arrays
IF( sbc_ice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate arrays' )
IF( sbc_ice_cice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate cice arrays' )
! Ensure ocean temperatures are nowhere below freezing if not a NEMO restart
IF( .NOT. ln_rstart ) THEN
ts(:,:,:,jp_tem,Kmm) = MAX (ts(:,:,:,jp_tem,Kmm),Tocnfrz)
ts(:,:,:,jp_tem,Kbb) = ts(:,:,:,jp_tem,Kmm)
ENDIF
fr_iu(:,:)=0.0
fr_iv(:,:)=0.0
CALL cice2nemo(aice,fr_i, 'T', 1. )
IF( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN
DO jl=1,ncat
CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. )
ENDDO
ENDIF
! T point to U point
! T point to V point
DO_2D( 1, 0, 1, 0 )
fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1)
fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', fr_iu , 'U', 1.0_wp, fr_iv , 'V', 1.0_wp )
! set the snow+ice mass
CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. )
CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. )
snwice_mass (:,:) = ( rhos * ztmp1(:,:) + rhoi * ztmp2(:,:) )
snwice_mass_b(:,:) = snwice_mass(:,:)
IF( .NOT.ln_rstart ) THEN
IF( ln_ice_embd ) THEN ! embedded sea-ice: deplete the initial ssh below sea-ice area
ssh(:,:,Kmm) = ssh(:,:,Kmm) - snwice_mass(:,:) * r1_rho0
ssh(:,:,Kbb) = ssh(:,:,Kbb) - snwice_mass(:,:) * r1_rho0
!!gm This should be put elsewhere.... (same remark for limsbc)
!!gm especially here it is assumed zstar coordinate, but it can be ztilde....
#if defined key_qco
IF( .NOT.ln_linssh ) CALL dom_qco_zgr( Kbb, Kmm ) ! interpolation scale factor, depth and water column
#else
IF( .NOT.ln_linssh ) THEN
!
DO jk = 1,jpkm1 ! adjust initial vertical scale factors
e3t(:,:,jk,Kmm) = e3t_0(:,:,jk)*( 1._wp + ssh(:,:,Kmm)*r1_ht_0(:,:)*tmask(:,:,jk) )
e3t(:,:,jk,Kbb) = e3t_0(:,:,jk)*( 1._wp + ssh(:,:,Kbb)*r1_ht_0(:,:)*tmask(:,:,jk) )
ENDDO
e3t(:,:,:,Krhs) = e3t(:,:,:,Kbb)
! Reconstruction of all vertical scale factors at now and before time-steps
! =============================================================================
! Horizontal scale factor interpolations
! --------------------------------------
CALL dom_vvl_interpol( e3t(:,:,:,Kbb), e3u(:,:,:,Kbb), 'U' )
CALL dom_vvl_interpol( e3t(:,:,:,Kbb), e3v(:,:,:,Kbb), 'V' )
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3u(:,:,:,Kmm), 'U' )
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3v(:,:,:,Kmm), 'V' )
CALL dom_vvl_interpol( e3u(:,:,:,Kmm), e3f(:,:,:), 'F' )
! Vertical scale factor interpolations
! ------------------------------------
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3w (:,:,:,Kmm), 'W' )
CALL dom_vvl_interpol( e3u(:,:,:,Kmm), e3uw(:,:,:,Kmm), 'UW' )
CALL dom_vvl_interpol( e3v(:,:,:,Kmm), e3vw(:,:,:,Kmm), 'VW' )
CALL dom_vvl_interpol( e3u(:,:,:,Kbb), e3uw(:,:,:,Kbb), 'UW' )
CALL dom_vvl_interpol( e3v(:,:,:,Kbb), e3vw(:,:,:,Kbb), 'VW' )
! t- and w- points depth
! ----------------------
gdept(:,:,1,Kmm) = 0.5_wp * e3w(:,:,1,Kmm)
gdepw(:,:,1,Kmm) = 0.0_wp
gde3w(:,:,1) = gdept(:,:,1,Kmm) - ssh(:,:,Kmm)
DO jk = 2, jpk
gdept(:,:,jk,Kmm) = gdept(:,:,jk-1,Kmm) + e3w(:,:,jk,Kmm)
gdepw(:,:,jk,Kmm) = gdepw(:,:,jk-1,Kmm) + e3t(:,:,jk-1,Kmm)
gde3w(:,:,jk) = gdept(:,:,jk ,Kmm) - sshn (:,:)
END DO
ENDIF
#endif
ENDIF
ENDIF
!
END SUBROUTINE cice_sbc_init
SUBROUTINE cice_sbc_in( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_in ***
!! ** Purpose: Set coupling fields and pass to CICE
!!---------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt ! ocean time step
INTEGER, INTENT(in ) :: ksbc ! surface forcing type
!
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp, zpice
REAL(wp), DIMENSION(jpi,jpj,ncat) :: ztmpn
REAL(wp) :: zintb, zintn ! dummy argument
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_in'
ENDIF
ztmp(:,:)=0.0
! Aggregate ice concentration already set in cice_sbc_out (or cice_sbc_init on
! the first time-step)
! forced and coupled case
IF( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN
ztmpn(:,:,:)=0.0
! x comp of wind stress (CI_1)
! U point to F point
DO_2D( 1, 1, 1, 0 )
ztmp(ji,jj) = 0.5 * ( fr_iu(ji,jj) * utau(ji,jj) &
+ fr_iu(ji,jj+1) * utau(ji,jj+1) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,strax,'F', -1. )
! y comp of wind stress (CI_2)
! V point to F point
DO_2D( 1, 0, 1, 1 )
ztmp(ji,jj) = 0.5 * ( fr_iv(ji,jj) * vtau(ji,jj) &
+ fr_iv(ji+1,jj) * vtau(ji+1,jj) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,stray,'F', -1. )
! Surface downward latent heat flux (CI_5)
IF(ksbc == jp_flx) THEN
DO jl=1,ncat
ztmpn(:,:,jl)=qla_ice(:,:,1)*a_i(:,:,jl)
ENDDO
ELSE
! emp_ice is set in sbc_cpl_ice_flx as sublimation-snow
qla_ice(:,:,1)= - ( emp_ice(:,:)+sprecip(:,:) ) * rLsub
! End of temporary code
DO_2D( 1, 1, 1, 1 )
IF(fr_i(ji,jj).eq.0.0) THEN
DO jl=1,ncat
ztmpn(ji,jj,jl)=0.0
ENDDO
! This will then be conserved in CICE
ztmpn(ji,jj,1)=qla_ice(ji,jj,1)
ELSE
DO jl=1,ncat
ztmpn(ji,jj,jl)=qla_ice(ji,jj,1)*a_i(ji,jj,jl)/fr_i(ji,jj)
ENDDO
ENDIF
END_2D
ENDIF
DO jl=1,ncat
CALL nemo2cice(ztmpn(:,:,jl),flatn_f(:,:,jl,:),'T', 1. )
! GBM conductive flux through ice (CI_6)
! Convert to GBM
IF(ksbc == jp_flx) THEN
ztmp(:,:) = botmelt(:,:,jl)*a_i(:,:,jl)
ELSE
ztmp(:,:) = botmelt(:,:,jl)
ENDIF
CALL nemo2cice(ztmp,fcondtopn_f(:,:,jl,:),'T', 1. )
! GBM surface heat flux (CI_7)
! Convert to GBM
IF(ksbc == jp_flx) THEN
ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl))*a_i(:,:,jl)
ELSE
ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl))
ENDIF
CALL nemo2cice(ztmp,fsurfn_f(:,:,jl,:),'T', 1. )
ENDDO
ELSE IF(ksbc == jp_blk) THEN
! Pass bulk forcing fields to CICE (which will calculate heat fluxes etc itself)
! x comp and y comp of atmosphere surface wind (CICE expects on T points)
ztmp(:,:) = wndi_ice(:,:)
CALL nemo2cice(ztmp,uatm,'T', -1. )
ztmp(:,:) = wndj_ice(:,:)
CALL nemo2cice(ztmp,vatm,'T', -1. )
ztmp(:,:) = SQRT ( wndi_ice(:,:)**2 + wndj_ice(:,:)**2 )
CALL nemo2cice(ztmp,wind,'T', 1. ) ! Wind speed (m/s)
ztmp(:,:) = qsr_ice(:,:,1)
CALL nemo2cice(ztmp,fsw,'T', 1. ) ! Incoming short-wave (W/m^2)
ztmp(:,:) = qlw_ice(:,:,1)
CALL nemo2cice(ztmp,flw,'T', 1. ) ! Incoming long-wave (W/m^2)
ztmp(:,:) = tatm_ice(:,:)
CALL nemo2cice(ztmp,Tair,'T', 1. ) ! Air temperature (K)
CALL nemo2cice(ztmp,potT,'T', 1. ) ! Potential temp (K)
! Following line uses MAX(....) to avoid problems if tatm_ice has unset halo rows
ztmp(:,:) = 101000. / ( 287.04 * MAX(1.0,tatm_ice(:,:)) )
! Constant (101000.) atm pressure assumed
CALL nemo2cice(ztmp,rhoa,'T', 1. ) ! Air density (kg/m^3)
ztmp(:,:) = qatm_ice(:,:)
CALL nemo2cice(ztmp,Qa,'T', 1. ) ! Specific humidity (kg/kg)
ztmp(:,:)=10.0
CALL nemo2cice(ztmp,zlvl,'T', 1. ) ! Atmos level height (m)
! May want to check all values are physically realistic (as in CICE routine
! prepare_forcing)?
! Divide shortwave into spectral bands (as in prepare_forcing)
ztmp(:,:)=qsr_ice(:,:,1)*frcvdr ! visible direct
CALL nemo2cice(ztmp,swvdr,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcvdf ! visible diffuse
CALL nemo2cice(ztmp,swvdf,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcidr ! near IR direct
CALL nemo2cice(ztmp,swidr,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcidf ! near IR diffuse
CALL nemo2cice(ztmp,swidf,'T', 1. )
ENDIF
! Snowfall
! Ensure fsnow is positive (as in CICE routine prepare_forcing)
IF( iom_use('snowpre') ) CALL iom_put('snowpre',MAX( (1.0-fr_i(:,:))*sprecip(:,:) ,0.0)) !!Joakim edit
ztmp(:,:)=MAX(fr_i(:,:)*sprecip(:,:),0.0)
CALL nemo2cice(ztmp,fsnow,'T', 1. )
! Rainfall
IF( iom_use('precip') ) CALL iom_put('precip', (1.0-fr_i(:,:))*(tprecip(:,:)-sprecip(:,:)) ) !!Joakim edit
ztmp(:,:)=fr_i(:,:)*(tprecip(:,:)-sprecip(:,:))
CALL nemo2cice(ztmp,frain,'T', 1. )
! Freezing/melting potential
! Calculated over NEMO leapfrog timestep (hence 2*dt)
nfrzmlt(:,:) = rho0 * rcp * e3t_m(:,:) * ( Tocnfrz-sst_m(:,:) ) / ( 2.0*dt )
ztmp(:,:) = nfrzmlt(:,:)
CALL nemo2cice(ztmp,frzmlt,'T', 1. )
! SST and SSS
CALL nemo2cice(sst_m,sst,'T', 1. )
CALL nemo2cice(sss_m,sss,'T', 1. )
! x comp and y comp of surface ocean current
! U point to F point
DO_2D( 1, 1, 1, 0 )
ztmp(ji,jj)=0.5*(ssu_m(ji,jj)+ssu_m(ji,jj+1))*fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,uocn,'F', -1. )
! V point to F point
DO_2D( 1, 0, 1, 1 )
ztmp(ji,jj)=0.5*(ssv_m(ji,jj)+ssv_m(ji+1,jj))*fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,vocn,'F', -1. )
IF( ln_ice_embd ) THEN !== embedded sea ice: compute representative ice top surface ==!
!
! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[n/nn_fsbc], n=0,nn_fsbc-1}
! = (1/nn_fsbc)^2 * {SUM[n], n=0,nn_fsbc-1}
zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp
!
! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1}
! = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1})
zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp
!
zpice(:,:) = ssh_m(:,:) + ( zintn * snwice_mass(:,:) + zintb * snwice_mass_b(:,:) ) * r1_rho0
!
!
ELSE !== non-embedded sea ice: use ocean surface for slope calculation ==!
zpice(:,:) = ssh_m(:,:)
ENDIF
! x comp and y comp of sea surface slope (on F points)
! T point to F point
DO_2D( 1, 0, 1, 0 )
ztmp(ji,jj)=0.5 * ( (zpice(ji+1,jj )-zpice(ji,jj )) * r1_e1u(ji,jj ) &
& + (zpice(ji+1,jj+1)-zpice(ji,jj+1)) * r1_e1u(ji,jj+1) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice( ztmp,ss_tltx,'F', -1. )
! T point to F point
DO_2D( 1, 0, 1, 0 )
ztmp(ji,jj)=0.5 * ( (zpice(ji ,jj+1)-zpice(ji ,jj)) * r1_e2v(ji ,jj) &
& + (zpice(ji+1,jj+1)-zpice(ji+1,jj)) * r1_e2v(ji+1,jj) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,ss_tlty,'F', -1. )
!
END SUBROUTINE cice_sbc_in
SUBROUTINE cice_sbc_out( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_out ***
!! ** Purpose: Get fields from CICE and set surface fields for NEMO
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time step
INTEGER, INTENT( in ) :: ksbc ! surface forcing type
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp1, ztmp2
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_out'
ENDIF
! x comp of ocean-ice stress
CALL cice2nemo(strocnx,ztmp1,'F', -1. )
ss_iou(:,:)=0.0
! F point to U point
DO_2D( 0, 0, 0, 0 )
ss_iou(ji,jj) = 0.5 * ( ztmp1(ji,jj-1) + ztmp1(ji,jj) ) * umask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', ss_iou , 'U', -1.0_wp )
! y comp of ocean-ice stress
CALL cice2nemo(strocny,ztmp1,'F', -1. )
ss_iov(:,:)=0.0
! F point to V point
DO_2D( 0, 0, 1, 0 )
ss_iov(ji,jj) = 0.5 * ( ztmp1(ji-1,jj) + ztmp1(ji,jj) ) * vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', ss_iov , 'V', -1.0_wp )
! x and y comps of surface stress
! Combine wind stress and ocean-ice stress
! [Note that fr_iu hasn't yet been updated, so still from start of CICE timestep]
! strocnx and strocny already weighted by ice fraction in CICE so not done here
utau(:,:)=(1.0-fr_iu(:,:))*utau(:,:)-ss_iou(:,:)
vtau(:,:)=(1.0-fr_iv(:,:))*vtau(:,:)-ss_iov(:,:)
! Also need ice/ocean stress on T points so that taum can be updated
! This interpolation is already done in CICE so best to use those values
CALL cice2nemo(strocnxT,ztmp1,'T',-1.)
CALL cice2nemo(strocnyT,ztmp2,'T',-1.)
! Update taum with modulus of ice-ocean stress
! strocnxT and strocnyT are not weighted by ice fraction in CICE so must be done here
taum(:,:)=(1.0-fr_i(:,:))*taum(:,:)+fr_i(:,:)*SQRT(ztmp1*ztmp1 + ztmp2*ztmp2)
! Freshwater fluxes
IF(ksbc == jp_flx) THEN
! Note that emp from the forcing files is evap*(1-aice)-(tprecip-aice*sprecip)
! What we want here is evap*(1-aice)-tprecip*(1-aice) hence manipulation below
! Not ideal since aice won't be the same as in the atmosphere.
! Better to use evap and tprecip? (but for now don't read in evap in this case)
emp(:,:) = emp(:,:)+fr_i(:,:)*(tprecip(:,:)-sprecip(:,:))
ELSE IF(ksbc == jp_blk) THEN
emp(:,:) = (1.0-fr_i(:,:))*emp(:,:)
ELSE IF(ksbc == jp_purecpl) THEN
! emp_tot is set in sbc_cpl_ice_flx (called from cice_sbc_in above)
! This is currently as required with the coupling fields from the UM atmosphere
emp(:,:) = emp_tot(:,:)+tprecip(:,:)*fr_i(:,:)
ENDIF
#if defined key_cice4
CALL cice2nemo(fresh_gbm,ztmp1,'T', 1. )
CALL cice2nemo(fsalt_gbm,ztmp2,'T', 1. )
#else
CALL cice2nemo(fresh_ai,ztmp1,'T', 1. )
CALL cice2nemo(fsalt_ai,ztmp2,'T', 1. )
#endif
! Check to avoid unphysical expression when ice is forming (ztmp1 negative)
! Otherwise we are effectively allowing ice of higher salinity than the ocean to form
! which has to be compensated for by the ocean salinity potentially going negative
! This check breaks conservation but seems reasonable until we have prognostic ice salinity
! Note the 1000.0 below is to convert from kg salt to g salt (needed for PSU)
WHERE (ztmp1(:,:).lt.0.0) ztmp2(:,:)=MAX(ztmp2(:,:),ztmp1(:,:)*sss_m(:,:)/1000.0)
sfx(:,:)=ztmp2(:,:)*1000.0
emp(:,:)=emp(:,:)-ztmp1(:,:)
fmmflx(:,:) = ztmp1(:,:) !!Joakim edit
CALL lbc_lnk( 'sbcice_cice', emp , 'T', 1.0_wp, sfx , 'T', 1.0_wp )
! Solar penetrative radiation and non solar surface heat flux
! Scale qsr and qns according to ice fraction (bulk formulae only)
IF(ksbc == jp_blk) THEN
qsr(:,:)=qsr(:,:)*(1.0-fr_i(:,:))
qns(:,:)=qns(:,:)*(1.0-fr_i(:,:))
ENDIF
! Take into account snow melting except for fully coupled when already in qns_tot
IF(ksbc == jp_purecpl) THEN
qsr(:,:)= qsr_tot(:,:)
qns(:,:)= qns_tot(:,:)
ELSE
qns(:,:)= qns(:,:)-sprecip(:,:)*Lfresh*(1.0-fr_i(:,:))
ENDIF
! Now add in ice / snow related terms
! [fswthru will be zero unless running with calc_Tsfc=T in CICE]
#if defined key_cice4
CALL cice2nemo(fswthru_gbm,ztmp1,'T', 1. )
#else
CALL cice2nemo(fswthru_ai,ztmp1,'T', 1. )
#endif
qsr(:,:)=qsr(:,:)+ztmp1(:,:)
CALL lbc_lnk( 'sbcice_cice', qsr , 'T', 1.0_wp )
DO_2D( 1, 1, 1, 1 )
nfrzmlt(ji,jj)=MAX(nfrzmlt(ji,jj),0.0)
END_2D
#if defined key_cice4
CALL cice2nemo(fhocn_gbm,ztmp1,'T', 1. )
#else
CALL cice2nemo(fhocn_ai,ztmp1,'T', 1. )
#endif
qns(:,:)=qns(:,:)+nfrzmlt(:,:)+ztmp1(:,:)
CALL lbc_lnk( 'sbcice_cice', qns , 'T', 1.0_wp )
! Prepare for the following CICE time-step
CALL cice2nemo(aice,fr_i,'T', 1. )
IF( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN
DO jl=1,ncat
CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. )
ENDDO
ENDIF
! T point to U point
! T point to V point
DO_2D( 1, 0, 1, 0 )
fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1)
fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', fr_iu , 'U', 1.0_wp, fr_iv , 'V', 1.0_wp )
! set the snow+ice mass
CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. )
CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. )
snwice_mass (:,:) = ( rhos * ztmp1(:,:) + rhoi * ztmp2(:,:) )
snwice_mass_b(:,:) = snwice_mass(:,:)
snwice_fmass (:,:) = ( snwice_mass(:,:) - snwice_mass_b(:,:) ) / dt
!
END SUBROUTINE cice_sbc_out
SUBROUTINE cice_sbc_hadgam( kt )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_hadgam ***
!! ** Purpose: Prepare fields needed to pass to HadGAM3 atmosphere
!!
!!
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time step
!!
INTEGER :: jl ! dummy loop index
INTEGER :: ierror
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_hadgam'
IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )
ENDIF
! ! =========================== !
! ! Prepare Coupling fields !
! ! =========================== !
!
! x and y comp of ice velocity
!
CALL cice2nemo(uvel,u_ice,'F', -1. )
CALL cice2nemo(vvel,v_ice,'F', -1. )
!
! Ice concentration (CO_1) = a_i calculated at end of cice_sbc_out
!
! Snow and ice thicknesses (CO_2 and CO_3)
!
DO jl = 1, ncat
CALL cice2nemo( vsnon(:,:,jl,:), h_s(:,:,jl),'T', 1. )
CALL cice2nemo( vicen(:,:,jl,:), h_i(:,:,jl),'T', 1. )
END DO
!
END SUBROUTINE cice_sbc_hadgam
SUBROUTINE cice_sbc_final
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_final ***
!! ** Purpose: Finalize CICE
!!---------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)'cice_sbc_final'
!
CALL CICE_Finalize
!
END SUBROUTINE cice_sbc_final
SUBROUTINE cice_sbc_force (kt)
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_force ***
!! ** Purpose : Provide CICE forcing from files
!!
!!---------------------------------------------------------------------
!! ** Method : READ monthly flux file in NetCDF files
!!
!! snowfall
!! rainfall
!! sublimation rate
!! topmelt (category)
!! botmelt (category)
!!
!! History :
!!----------------------------------------------------------------------
USE iom
!!
INTEGER, INTENT( in ) :: kt ! ocean time step
!!
INTEGER :: ierror ! return error code
INTEGER :: ifpr ! dummy loop index
!!
CHARACTER(len=100) :: cn_dir ! Root directory for location of CICE forcing files
TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read
TYPE(FLD_N) :: sn_snow, sn_rain, sn_sblm ! informations about the fields to be read
TYPE(FLD_N) :: sn_top1, sn_top2, sn_top3, sn_top4, sn_top5
TYPE(FLD_N) :: sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5
!!
NAMELIST/namsbc_cice/ cn_dir, sn_snow, sn_rain, sn_sblm, &
& sn_top1, sn_top2, sn_top3, sn_top4, sn_top5, &
& sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5
INTEGER :: ios
!!---------------------------------------------------------------------
! ! ====================== !
IF( kt == nit000 ) THEN ! First call kt=nit000 !
! ! ====================== !
! namsbc_cice is not yet in the reference namelist
! set file information (default values)
cn_dir = './' ! directory in which the model is executed
! (NB: frequency positive => hours, negative => months)
! ! file ! frequency ! variable ! time intep ! clim ! 'yearly' or ! weights ! rotation ! landmask
! ! name ! (hours) ! name ! (T/F) ! (T/F) ! 'monthly' ! filename ! pairs ! file
sn_snow = FLD_N( 'snowfall_1m' , -1. , 'snowfall' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_rain = FLD_N( 'rainfall_1m' , -1. , 'rainfall' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_sblm = FLD_N( 'sublim_1m' , -1. , 'sublim' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top1 = FLD_N( 'topmeltn1_1m' , -1. , 'topmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top2 = FLD_N( 'topmeltn2_1m' , -1. , 'topmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top3 = FLD_N( 'topmeltn3_1m' , -1. , 'topmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top4 = FLD_N( 'topmeltn4_1m' , -1. , 'topmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top5 = FLD_N( 'topmeltn5_1m' , -1. , 'topmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot1 = FLD_N( 'botmeltn1_1m' , -1. , 'botmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot2 = FLD_N( 'botmeltn2_1m' , -1. , 'botmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot3 = FLD_N( 'botmeltn3_1m' , -1. , 'botmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot4 = FLD_N( 'botmeltn4_1m' , -1. , 'botmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot5 = FLD_N( 'botmeltn5_1m' , -1. , 'botmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' )
READ ( numnam_ref, namsbc_cice, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cice in reference namelist' )
READ ( numnam_cfg, namsbc_cice, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_cice in configuration namelist' )
IF(lwm) WRITE ( numond, namsbc_cice )
! store namelist information in an array
slf_i(jp_snow) = sn_snow ; slf_i(jp_rain) = sn_rain ; slf_i(jp_sblm) = sn_sblm
slf_i(jp_top1) = sn_top1 ; slf_i(jp_top2) = sn_top2 ; slf_i(jp_top3) = sn_top3
slf_i(jp_top4) = sn_top4 ; slf_i(jp_top5) = sn_top5 ; slf_i(jp_bot1) = sn_bot1
slf_i(jp_bot2) = sn_bot2 ; slf_i(jp_bot3) = sn_bot3 ; slf_i(jp_bot4) = sn_bot4
slf_i(jp_bot5) = sn_bot5
! set sf structure
ALLOCATE( sf(jpfld), STAT=ierror )
IF( ierror > 0 ) THEN
CALL ctl_stop( 'cice_sbc_force: unable to allocate sf structure' ) ; RETURN
ENDIF
DO ifpr= 1, jpfld
ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) )
ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) )
END DO
! fill sf with slf_i and control print
CALL fld_fill( sf, slf_i, cn_dir, 'cice_sbc_force', 'flux formulation for CICE', 'namsbc_cice' )
!
ENDIF
CALL fld_read( kt, nn_fsbc, sf ) ! Read input fields and provides the
! ! input fields at the current time-step
! set the fluxes from read fields
sprecip(:,:) = sf(jp_snow)%fnow(:,:,1)
tprecip(:,:) = sf(jp_snow)%fnow(:,:,1)+sf(jp_rain)%fnow(:,:,1)
! May be better to do this conversion somewhere else
qla_ice(:,:,1) = -rLsub*sf(jp_sblm)%fnow(:,:,1)
topmelt(:,:,1) = sf(jp_top1)%fnow(:,:,1)
topmelt(:,:,2) = sf(jp_top2)%fnow(:,:,1)
topmelt(:,:,3) = sf(jp_top3)%fnow(:,:,1)
topmelt(:,:,4) = sf(jp_top4)%fnow(:,:,1)
topmelt(:,:,5) = sf(jp_top5)%fnow(:,:,1)
botmelt(:,:,1) = sf(jp_bot1)%fnow(:,:,1)
botmelt(:,:,2) = sf(jp_bot2)%fnow(:,:,1)
botmelt(:,:,3) = sf(jp_bot3)%fnow(:,:,1)
botmelt(:,:,4) = sf(jp_bot4)%fnow(:,:,1)
botmelt(:,:,5) = sf(jp_bot5)%fnow(:,:,1)
! control print (if less than 100 time-step asked)
IF( nitend-nit000 <= 100 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) ' read forcing fluxes for CICE OK'
CALL FLUSH(numout)
ENDIF
END SUBROUTINE cice_sbc_force
SUBROUTINE nemo2cice( pn, pc, cd_type, psgn)
!!---------------------------------------------------------------------
!! *** ROUTINE nemo2cice ***
!! ** Purpose : Transfer field in NEMO array to field in CICE array.
#if defined key_nemocice_decomp
!!
!! NEMO and CICE PE sub domains are identical, hence
!! there is no need to gather or scatter data from
!! one PE configuration to another.
#else
!! Automatically gather/scatter between
!! different processors and blocks
!! ** Method : A. Ensure all haloes are filled in NEMO field (pn)
!! B. Gather pn into global array (png)
!! C. Map png into CICE global array (pcg)
!! D. Scatter pcg to CICE blocks (pc) + update haloes
#endif
!!---------------------------------------------------------------------
CHARACTER(len=1), INTENT( in ) :: &
cd_type ! nature of pn grid-point
! ! = T or F gridpoints
REAL(wp), INTENT( in ) :: &
psgn ! control of the sign change
! ! =-1 , the sign is modified following the type of b.c. used
! ! = 1 , no sign change
REAL(wp), DIMENSION(jpi,jpj) :: pn
#if !defined key_nemocice_decomp
REAL(wp), DIMENSION(jpiglo,jpjglo) :: png2
REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg
#endif
REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc
INTEGER (int_kind) :: &
field_type, &! id for type of field (scalar, vector, angle)
grid_loc ! id for location on horizontal grid
! (center, NEcorner, Nface, Eface)
INTEGER :: ji, jj, jn ! dummy loop indices
!!---------------------------------------------------------------------
! A. Ensure all haloes are filled in NEMO field (pn)
CALL lbc_lnk( 'sbcice_cice', pn , cd_type, psgn )
#if defined key_nemocice_decomp
! Copy local domain data from NEMO to CICE field
pc(:,:,1)=0.0
DO jj=2,ny_block-1
DO ji=2,nx_block-1
pc(ji,jj,1)=pn(ji-1+ji_off,jj-1+jj_off)
ENDDO
ENDDO
#else
! B. Gather pn into global array (png)
IF( jpnij > 1) THEN
CALL mppsync
CALL mppgather (pn,0,png)
CALL mppsync
ELSE
png(:,:,1)=pn(:,:)
ENDIF
! C. Map png into CICE global array (pcg)
! Need to make sure this is robust to changes in NEMO halo rows....
! (may be OK but not 100% sure)
IF(narea==1) THEN
! pcg(:,:)=0.0
DO jn=1,jpnij
DO jj=njs0all(jn),nje0all(jn)
DO ji=nis0all(jn),nie0all(jn)
png2(ji+nimppt(jn)-1,jj+njmppt(jn)-1)=png(ji,jj,jn)
ENDDO
ENDDO
ENDDO
DO jj=1,ny_global
DO ji=1,nx_global
pcg(ji,jj)=png2(ji+ji_off,jj+jj_off)
ENDDO
ENDDO
ENDIF
#endif
SELECT CASE ( cd_type )
CASE ( 'T' )
grid_loc=field_loc_center
CASE ( 'F' )
grid_loc=field_loc_NEcorner
END SELECT
SELECT CASE ( NINT(psgn) )
CASE ( -1 )
field_type=field_type_vector
CASE ( 1 )
field_type=field_type_scalar
END SELECT
#if defined key_nemocice_decomp
! Ensure CICE halos are up to date
CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type)
#else
! D. Scatter pcg to CICE blocks (pc) + update halos
CALL scatter_global(pc, pcg, 0, distrb_info, grid_loc, field_type)
#endif
END SUBROUTINE nemo2cice
SUBROUTINE cice2nemo ( pc, pn, cd_type, psgn )
!!---------------------------------------------------------------------
!! *** ROUTINE cice2nemo ***
!! ** Purpose : Transfer field in CICE array to field in NEMO array.
#if defined key_nemocice_decomp
!!
!! NEMO and CICE PE sub domains are identical, hence
!! there is no need to gather or scatter data from
!! one PE configuration to another.
#else
!! Automatically deal with scatter/gather between
!! different processors and blocks
!! ** Method : A. Gather CICE blocks (pc) into global array (pcg)
!! B. Map pcg into NEMO global array (png)
!! C. Scatter png into NEMO field (pn) for each processor
!! D. Ensure all haloes are filled in pn
#endif
!!---------------------------------------------------------------------
CHARACTER(len=1), INTENT( in ) :: &
cd_type ! nature of pn grid-point
! ! = T or F gridpoints
REAL(wp), INTENT( in ) :: &
psgn ! control of the sign change
! ! =-1 , the sign is modified following the type of b.c. used
! ! = 1 , no sign change
REAL(wp), DIMENSION(jpi,jpj) :: pn
#if defined key_nemocice_decomp
INTEGER (int_kind) :: &
field_type, & ! id for type of field (scalar, vector, angle)
grid_loc ! id for location on horizontal grid
! (center, NEcorner, Nface, Eface)
#else
REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg
#endif
REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc
INTEGER :: ji, jj, jn ! dummy loop indices
#if defined key_nemocice_decomp
SELECT CASE ( cd_type )
CASE ( 'T' )
grid_loc=field_loc_center
CASE ( 'F' )
grid_loc=field_loc_NEcorner
END SELECT
SELECT CASE ( NINT(psgn) )
CASE ( -1 )
field_type=field_type_vector
CASE ( 1 )
field_type=field_type_scalar
END SELECT
CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type)
pn(:,:)=0.0
DO_2D( 1, 0, 1, 0 )
pn(ji,jj)=pc(ji+1-ji_off,jj+1-jj_off,1)
END_2D
#else
! A. Gather CICE blocks (pc) into global array (pcg)
CALL gather_global(pcg, pc, 0, distrb_info)
! B. Map pcg into NEMO global array (png)
! Need to make sure this is robust to changes in NEMO halo rows....
! (may be OK but not spent much time thinking about it)
! Note that non-existent pcg elements may be used below, but
! the lbclnk call on pn will replace these with sensible values
IF(narea==1) THEN