Forked from
Consortium Members / UKMO / GOSI / GOSI
223 commits behind the upstream repository.
-
Guillaume Samson authored89746a6d
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
sbcice_cice.F90 43.48 KiB
MODULE sbcice_cice
!!======================================================================
!! *** MODULE sbcice_cice ***
!! To couple with sea ice model CICE (LANL)
!!=====================================================================
#if defined key_cice
!!----------------------------------------------------------------------
!! 'key_cice' : CICE sea-ice model
!!----------------------------------------------------------------------
!! sbc_ice_cice : sea-ice model time-stepping and update ocean sbc over ice-covered area
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
# if defined key_qco
USE domqco ! Variable volume
# else
USE domvvl ! Variable volume
# endif
USE phycst, only : rcp, rho0, r1_rho0, rhos, rhoi
USE in_out_manager ! I/O manager
USE iom, ONLY : iom_put,iom_use ! I/O manager library !!Joakim edit
USE lib_mpp ! distributed memory computing library
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE daymod ! calendar
USE fldread ! read input fields
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
USE sbcblk ! Surface boundary condition: bulk
USE sbccpl
USE ice_kinds_mod
USE ice_blocks
USE ice_domain
USE ice_domain_size
USE ice_boundary
USE ice_constants
USE ice_gather_scatter
USE ice_calendar, only: dt
USE ice_state, only: aice,aicen,uvel,vvel,vsno,vsnon,vice,vicen
# if defined key_cice4
USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, &
strocnxT,strocnyT, &
sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_gbm, &
fresh_gbm,fhocn_gbm,fswthru_gbm,frzmlt, &
flatn_f,fsurfn_f,fcondtopn_f, &
uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, &
swvdr,swvdf,swidr,swidf
USE ice_therm_vertical, only: calc_Tsfc
#else
USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, &
strocnxT,strocnyT, &
sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_ai, &
fresh_ai,fhocn_ai,fswthru_ai,frzmlt, &
flatn_f,fsurfn_f,fcondtopn_f, &
uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, &
swvdr,swvdf,swidr,swidf
USE ice_therm_shared, only: calc_Tsfc
#endif
USE ice_forcing, only: frcvdr,frcvdf,frcidr,frcidf
USE ice_atmo, only: calc_strair
USE CICE_InitMod
USE CICE_RunMod
USE CICE_FinalMod
IMPLICIT NONE
PRIVATE
PUBLIC cice_sbc_init ! routine called by sbc_init
PUBLIC cice_sbc_final ! routine called by sbc_final
PUBLIC sbc_ice_cice ! routine called by sbc
INTEGER :: ji_off
INTEGER :: jj_off
INTEGER , PARAMETER :: jpfld = 13 ! maximum number of files to read
INTEGER , PARAMETER :: jp_snow = 1 ! index of snow file
INTEGER , PARAMETER :: jp_rain = 2 ! index of rain file
INTEGER , PARAMETER :: jp_sblm = 3 ! index of sublimation file
INTEGER , PARAMETER :: jp_top1 = 4 ! index of category 1 topmelt file
INTEGER , PARAMETER :: jp_top2 = 5 ! index of category 2 topmelt file
INTEGER , PARAMETER :: jp_top3 = 6 ! index of category 3 topmelt file
INTEGER , PARAMETER :: jp_top4 = 7 ! index of category 4 topmelt file
INTEGER , PARAMETER :: jp_top5 = 8 ! index of category 5 topmelt file
INTEGER , PARAMETER :: jp_bot1 = 9 ! index of category 1 botmelt file
INTEGER , PARAMETER :: jp_bot2 = 10 ! index of category 2 botmelt file
INTEGER , PARAMETER :: jp_bot3 = 11 ! index of category 3 botmelt file
INTEGER , PARAMETER :: jp_bot4 = 12 ! index of category 4 botmelt file
INTEGER , PARAMETER :: jp_bot5 = 13 ! index of category 5 botmelt file
TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:), PRIVATE :: png ! local array used in sbc_cice_ice
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: sbcice_cice.F90 14595 2021-03-05 22:36:50Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION sbc_ice_cice_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION sbc_ice_cice_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( png(jpi,jpj,jpnij), STAT=sbc_ice_cice_alloc )
CALL mpp_sum ( 'sbcice_cice', sbc_ice_cice_alloc )
IF( sbc_ice_cice_alloc > 0 ) CALL ctl_warn('sbc_ice_cice_alloc: allocation of arrays failed.')
END FUNCTION sbc_ice_cice_alloc
SUBROUTINE sbc_ice_cice( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE sbc_ice_cice ***
!!
!! ** Purpose : update the ocean surface boundary condition via the
!! CICE Sea Ice Model time stepping
!!
!! ** Method : - Get any extra forcing fields for CICE
!! - Prepare forcing fields
!! - CICE model time stepping
!! - call the routine that computes mass and
!! heat fluxes at the ice/ocean interface
!!
!! ** Action : - time evolution of the CICE sea-ice model
!! - update all sbc variables below sea-ice:
!! utau, vtau, qns , qsr, emp , sfx
!!---------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
INTEGER, INTENT(in) :: ksbc ! surface forcing type
!!----------------------------------------------------------------------
!
! !----------------------!
IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! Ice time-step only !
! !----------------------!
! Make sure any fluxes required for CICE are set
IF ( ksbc == jp_flx ) THEN
CALL cice_sbc_force(kt)
ELSE IF( ksbc == jp_purecpl ) THEN
CALL sbc_cpl_ice_flx( kt, fr_i )
ENDIF
CALL cice_sbc_in ( kt, ksbc )
CALL CICE_Run
CALL cice_sbc_out ( kt, ksbc )
IF( ksbc == jp_purecpl ) CALL cice_sbc_hadgam(kt+1)
ENDIF ! End sea-ice time step only
!
END SUBROUTINE sbc_ice_cice
SUBROUTINE cice_sbc_init( ksbc, Kbb, Kmm )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_init ***
!! ** Purpose: Initialise ice related fields for NEMO and coupling
!!
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: ksbc ! surface forcing type
INTEGER, INTENT( in ) :: Kbb, Kmm ! time level indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp1, ztmp2
REAL(wp) :: zcoefu, zcoefv, zcoeff ! local scalar
INTEGER :: ji, jj, jl, jk ! dummy loop indices
!!---------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)'cice_sbc_init'
ji_off = INT ( (jpiglo - nx_global) / 2 )
jj_off = INT ( (jpjglo - ny_global) / 2 )
#if defined key_nemocice_decomp
! Pass initial SST from NEMO to CICE so ice is initialised correctly if
! there is no restart file.
! Values from a CICE restart file would overwrite this
IF( .NOT. ln_rstart ) THEN
CALL nemo2cice( ts(:,:,1,jp_tem,Kmm) , sst , 'T' , 1.)
ENDIF
#endif
! Initialize CICE
CALL CICE_Initialize
! Do some CICE consistency checks
IF( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN
IF( calc_strair .OR. calc_Tsfc ) THEN
CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=F and calc_Tsfc=F in ice_in' )
ENDIF
ELSEIF(ksbc == jp_blk) THEN
IF( .NOT. (calc_strair .AND. calc_Tsfc) ) THEN
CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=T and calc_Tsfc=T in ice_in' )
ENDIF
ENDIF
! allocate sbc_ice and sbc_cice arrays
IF( sbc_ice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate arrays' )
IF( sbc_ice_cice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate cice arrays' )
! Ensure ocean temperatures are nowhere below freezing if not a NEMO restart
IF( .NOT. ln_rstart ) THEN
ts(:,:,:,jp_tem,Kmm) = MAX (ts(:,:,:,jp_tem,Kmm),Tocnfrz)
ts(:,:,:,jp_tem,Kbb) = ts(:,:,:,jp_tem,Kmm)
ENDIF
fr_iu(:,:)=0.0
fr_iv(:,:)=0.0
CALL cice2nemo(aice,fr_i, 'T', 1. )
IF( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN
DO jl=1,ncat
CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. )
ENDDO
ENDIF
! T point to U point
! T point to V point
DO_2D( 1, 0, 1, 0 )
fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1)
fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', fr_iu , 'U', 1.0_wp, fr_iv , 'V', 1.0_wp )
! set the snow+ice mass
CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. )
CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. )
snwice_mass (:,:) = ( rhos * ztmp1(:,:) + rhoi * ztmp2(:,:) )
snwice_mass_b(:,:) = snwice_mass(:,:)
IF( .NOT.ln_rstart ) THEN
IF( ln_ice_embd ) THEN ! embedded sea-ice: deplete the initial ssh below sea-ice area
ssh(:,:,Kmm) = ssh(:,:,Kmm) - snwice_mass(:,:) * r1_rho0
ssh(:,:,Kbb) = ssh(:,:,Kbb) - snwice_mass(:,:) * r1_rho0
!!gm This should be put elsewhere.... (same remark for limsbc)
!!gm especially here it is assumed zstar coordinate, but it can be ztilde....
#if defined key_qco
IF( .NOT.ln_linssh ) CALL dom_qco_zgr( Kbb, Kmm ) ! interpolation scale factor, depth and water column
#else
IF( .NOT.ln_linssh ) THEN
!
DO jk = 1,jpkm1 ! adjust initial vertical scale factors
e3t(:,:,jk,Kmm) = e3t_0(:,:,jk)*( 1._wp + ssh(:,:,Kmm)*r1_ht_0(:,:)*tmask(:,:,jk) )
e3t(:,:,jk,Kbb) = e3t_0(:,:,jk)*( 1._wp + ssh(:,:,Kbb)*r1_ht_0(:,:)*tmask(:,:,jk) )
ENDDO
e3t(:,:,:,Krhs) = e3t(:,:,:,Kbb)
! Reconstruction of all vertical scale factors at now and before time-steps
! =============================================================================
! Horizontal scale factor interpolations
! --------------------------------------
CALL dom_vvl_interpol( e3t(:,:,:,Kbb), e3u(:,:,:,Kbb), 'U' )
CALL dom_vvl_interpol( e3t(:,:,:,Kbb), e3v(:,:,:,Kbb), 'V' )
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3u(:,:,:,Kmm), 'U' )
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3v(:,:,:,Kmm), 'V' )
CALL dom_vvl_interpol( e3u(:,:,:,Kmm), e3f(:,:,:), 'F' )
! Vertical scale factor interpolations
! ------------------------------------
CALL dom_vvl_interpol( e3t(:,:,:,Kmm), e3w (:,:,:,Kmm), 'W' )
CALL dom_vvl_interpol( e3u(:,:,:,Kmm), e3uw(:,:,:,Kmm), 'UW' )
CALL dom_vvl_interpol( e3v(:,:,:,Kmm), e3vw(:,:,:,Kmm), 'VW' )
CALL dom_vvl_interpol( e3u(:,:,:,Kbb), e3uw(:,:,:,Kbb), 'UW' )
CALL dom_vvl_interpol( e3v(:,:,:,Kbb), e3vw(:,:,:,Kbb), 'VW' )
! t- and w- points depth
! ----------------------
gdept(:,:,1,Kmm) = 0.5_wp * e3w(:,:,1,Kmm)
gdepw(:,:,1,Kmm) = 0.0_wp
gde3w(:,:,1) = gdept(:,:,1,Kmm) - ssh(:,:,Kmm)
DO jk = 2, jpk
gdept(:,:,jk,Kmm) = gdept(:,:,jk-1,Kmm) + e3w(:,:,jk,Kmm)
gdepw(:,:,jk,Kmm) = gdepw(:,:,jk-1,Kmm) + e3t(:,:,jk-1,Kmm)
gde3w(:,:,jk) = gdept(:,:,jk ,Kmm) - sshn (:,:)
END DO
ENDIF
#endif
ENDIF
ENDIF
!
END SUBROUTINE cice_sbc_init
SUBROUTINE cice_sbc_in( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_in ***
!! ** Purpose: Set coupling fields and pass to CICE
!!---------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt ! ocean time step
INTEGER, INTENT(in ) :: ksbc ! surface forcing type
!
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp, zpice
REAL(wp), DIMENSION(jpi,jpj,ncat) :: ztmpn
REAL(wp) :: zintb, zintn ! dummy argument
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_in'
ENDIF
ztmp(:,:)=0.0
! Aggregate ice concentration already set in cice_sbc_out (or cice_sbc_init on
! the first time-step)
! forced and coupled case
IF( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN
ztmpn(:,:,:)=0.0
! x comp of wind stress (CI_1)
! U point to F point
DO_2D( 1, 1, 1, 0 )
ztmp(ji,jj) = 0.5 * ( fr_iu(ji,jj) * utau(ji,jj) &
+ fr_iu(ji,jj+1) * utau(ji,jj+1) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,strax,'F', -1. )
! y comp of wind stress (CI_2)
! V point to F point
DO_2D( 1, 0, 1, 1 )
ztmp(ji,jj) = 0.5 * ( fr_iv(ji,jj) * vtau(ji,jj) &
+ fr_iv(ji+1,jj) * vtau(ji+1,jj) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,stray,'F', -1. )
! Surface downward latent heat flux (CI_5)
IF(ksbc == jp_flx) THEN
DO jl=1,ncat
ztmpn(:,:,jl)=qla_ice(:,:,1)*a_i(:,:,jl)
ENDDO
ELSE
! emp_ice is set in sbc_cpl_ice_flx as sublimation-snow
qla_ice(:,:,1)= - ( emp_ice(:,:)+sprecip(:,:) ) * rLsub
! End of temporary code
DO_2D( 1, 1, 1, 1 )
IF(fr_i(ji,jj).eq.0.0) THEN
DO jl=1,ncat
ztmpn(ji,jj,jl)=0.0
ENDDO
! This will then be conserved in CICE
ztmpn(ji,jj,1)=qla_ice(ji,jj,1)
ELSE
DO jl=1,ncat
ztmpn(ji,jj,jl)=qla_ice(ji,jj,1)*a_i(ji,jj,jl)/fr_i(ji,jj)
ENDDO
ENDIF
END_2D
ENDIF
DO jl=1,ncat
CALL nemo2cice(ztmpn(:,:,jl),flatn_f(:,:,jl,:),'T', 1. )
! GBM conductive flux through ice (CI_6)
! Convert to GBM
IF(ksbc == jp_flx) THEN
ztmp(:,:) = botmelt(:,:,jl)*a_i(:,:,jl)
ELSE
ztmp(:,:) = botmelt(:,:,jl)
ENDIF
CALL nemo2cice(ztmp,fcondtopn_f(:,:,jl,:),'T', 1. )
! GBM surface heat flux (CI_7)
! Convert to GBM
IF(ksbc == jp_flx) THEN
ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl))*a_i(:,:,jl)
ELSE
ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl))
ENDIF
CALL nemo2cice(ztmp,fsurfn_f(:,:,jl,:),'T', 1. )
ENDDO
ELSE IF(ksbc == jp_blk) THEN
! Pass bulk forcing fields to CICE (which will calculate heat fluxes etc itself)
! x comp and y comp of atmosphere surface wind (CICE expects on T points)
ztmp(:,:) = wndi_ice(:,:)
CALL nemo2cice(ztmp,uatm,'T', -1. )
ztmp(:,:) = wndj_ice(:,:)
CALL nemo2cice(ztmp,vatm,'T', -1. )
ztmp(:,:) = SQRT ( wndi_ice(:,:)**2 + wndj_ice(:,:)**2 )
CALL nemo2cice(ztmp,wind,'T', 1. ) ! Wind speed (m/s)
ztmp(:,:) = qsr_ice(:,:,1)
CALL nemo2cice(ztmp,fsw,'T', 1. ) ! Incoming short-wave (W/m^2)
ztmp(:,:) = qlw_ice(:,:,1)
CALL nemo2cice(ztmp,flw,'T', 1. ) ! Incoming long-wave (W/m^2)
ztmp(:,:) = tatm_ice(:,:)
CALL nemo2cice(ztmp,Tair,'T', 1. ) ! Air temperature (K)
CALL nemo2cice(ztmp,potT,'T', 1. ) ! Potential temp (K)
! Following line uses MAX(....) to avoid problems if tatm_ice has unset halo rows
ztmp(:,:) = 101000. / ( 287.04 * MAX(1.0,tatm_ice(:,:)) )
! Constant (101000.) atm pressure assumed
CALL nemo2cice(ztmp,rhoa,'T', 1. ) ! Air density (kg/m^3)
ztmp(:,:) = qatm_ice(:,:)
CALL nemo2cice(ztmp,Qa,'T', 1. ) ! Specific humidity (kg/kg)
ztmp(:,:)=10.0
CALL nemo2cice(ztmp,zlvl,'T', 1. ) ! Atmos level height (m)
! May want to check all values are physically realistic (as in CICE routine
! prepare_forcing)?
! Divide shortwave into spectral bands (as in prepare_forcing)
ztmp(:,:)=qsr_ice(:,:,1)*frcvdr ! visible direct
CALL nemo2cice(ztmp,swvdr,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcvdf ! visible diffuse
CALL nemo2cice(ztmp,swvdf,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcidr ! near IR direct
CALL nemo2cice(ztmp,swidr,'T', 1. )
ztmp(:,:)=qsr_ice(:,:,1)*frcidf ! near IR diffuse
CALL nemo2cice(ztmp,swidf,'T', 1. )
ENDIF
! Snowfall
! Ensure fsnow is positive (as in CICE routine prepare_forcing)
IF( iom_use('snowpre') ) CALL iom_put('snowpre',MAX( (1.0-fr_i(:,:))*sprecip(:,:) ,0.0)) !!Joakim edit
ztmp(:,:)=MAX(fr_i(:,:)*sprecip(:,:),0.0)
CALL nemo2cice(ztmp,fsnow,'T', 1. )
! Rainfall
IF( iom_use('precip') ) CALL iom_put('precip', (1.0-fr_i(:,:))*(tprecip(:,:)-sprecip(:,:)) ) !!Joakim edit
ztmp(:,:)=fr_i(:,:)*(tprecip(:,:)-sprecip(:,:))
CALL nemo2cice(ztmp,frain,'T', 1. )
! Freezing/melting potential
! Calculated over NEMO leapfrog timestep (hence 2*dt)
nfrzmlt(:,:) = rho0 * rcp * e3t_m(:,:) * ( Tocnfrz-sst_m(:,:) ) / ( 2.0*dt )
ztmp(:,:) = nfrzmlt(:,:)
CALL nemo2cice(ztmp,frzmlt,'T', 1. )
! SST and SSS
CALL nemo2cice(sst_m,sst,'T', 1. )
CALL nemo2cice(sss_m,sss,'T', 1. )
! x comp and y comp of surface ocean current
! U point to F point
DO_2D( 1, 1, 1, 0 )
ztmp(ji,jj)=0.5*(ssu_m(ji,jj)+ssu_m(ji,jj+1))*fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,uocn,'F', -1. )
! V point to F point
DO_2D( 1, 0, 1, 1 )
ztmp(ji,jj)=0.5*(ssv_m(ji,jj)+ssv_m(ji+1,jj))*fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,vocn,'F', -1. )
IF( ln_ice_embd ) THEN !== embedded sea ice: compute representative ice top surface ==!
!
! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[n/nn_fsbc], n=0,nn_fsbc-1}
! = (1/nn_fsbc)^2 * {SUM[n], n=0,nn_fsbc-1}
zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp
!
! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1}
! = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1})
zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp
!
zpice(:,:) = ssh_m(:,:) + ( zintn * snwice_mass(:,:) + zintb * snwice_mass_b(:,:) ) * r1_rho0
!
!
ELSE !== non-embedded sea ice: use ocean surface for slope calculation ==!
zpice(:,:) = ssh_m(:,:)
ENDIF
! x comp and y comp of sea surface slope (on F points)
! T point to F point
DO_2D( 1, 0, 1, 0 )
ztmp(ji,jj)=0.5 * ( (zpice(ji+1,jj )-zpice(ji,jj )) * r1_e1u(ji,jj ) &
& + (zpice(ji+1,jj+1)-zpice(ji,jj+1)) * r1_e1u(ji,jj+1) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice( ztmp,ss_tltx,'F', -1. )
! T point to F point
DO_2D( 1, 0, 1, 0 )
ztmp(ji,jj)=0.5 * ( (zpice(ji ,jj+1)-zpice(ji ,jj)) * r1_e2v(ji ,jj) &
& + (zpice(ji+1,jj+1)-zpice(ji+1,jj)) * r1_e2v(ji+1,jj) ) * fmask(ji,jj,1)
END_2D
CALL nemo2cice(ztmp,ss_tlty,'F', -1. )
!
END SUBROUTINE cice_sbc_in
SUBROUTINE cice_sbc_out( kt, ksbc )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_out ***
!! ** Purpose: Get fields from CICE and set surface fields for NEMO
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time step
INTEGER, INTENT( in ) :: ksbc ! surface forcing type
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: ztmp1, ztmp2
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_out'
ENDIF
! x comp of ocean-ice stress
CALL cice2nemo(strocnx,ztmp1,'F', -1. )
ss_iou(:,:)=0.0
! F point to U point
DO_2D( 0, 0, 0, 0 )
ss_iou(ji,jj) = 0.5 * ( ztmp1(ji,jj-1) + ztmp1(ji,jj) ) * umask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', ss_iou , 'U', -1.0_wp )
! y comp of ocean-ice stress
CALL cice2nemo(strocny,ztmp1,'F', -1. )
ss_iov(:,:)=0.0
! F point to V point
DO_2D( 0, 0, 1, 0 )
ss_iov(ji,jj) = 0.5 * ( ztmp1(ji-1,jj) + ztmp1(ji,jj) ) * vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', ss_iov , 'V', -1.0_wp )
! x and y comps of surface stress
! Combine wind stress and ocean-ice stress
! [Note that fr_iu hasn't yet been updated, so still from start of CICE timestep]
! strocnx and strocny already weighted by ice fraction in CICE so not done here
utau(:,:)=(1.0-fr_iu(:,:))*utau(:,:)-ss_iou(:,:)
vtau(:,:)=(1.0-fr_iv(:,:))*vtau(:,:)-ss_iov(:,:)
! Also need ice/ocean stress on T points so that taum can be updated
! This interpolation is already done in CICE so best to use those values
CALL cice2nemo(strocnxT,ztmp1,'T',-1.)
CALL cice2nemo(strocnyT,ztmp2,'T',-1.)
! Update taum with modulus of ice-ocean stress
! strocnxT and strocnyT are not weighted by ice fraction in CICE so must be done here
taum(:,:)=(1.0-fr_i(:,:))*taum(:,:)+fr_i(:,:)*SQRT(ztmp1*ztmp1 + ztmp2*ztmp2)
! Freshwater fluxes
IF(ksbc == jp_flx) THEN
! Note that emp from the forcing files is evap*(1-aice)-(tprecip-aice*sprecip)
! What we want here is evap*(1-aice)-tprecip*(1-aice) hence manipulation below
! Not ideal since aice won't be the same as in the atmosphere.
! Better to use evap and tprecip? (but for now don't read in evap in this case)
emp(:,:) = emp(:,:)+fr_i(:,:)*(tprecip(:,:)-sprecip(:,:))
ELSE IF(ksbc == jp_blk) THEN
emp(:,:) = (1.0-fr_i(:,:))*emp(:,:)
ELSE IF(ksbc == jp_purecpl) THEN
! emp_tot is set in sbc_cpl_ice_flx (called from cice_sbc_in above)
! This is currently as required with the coupling fields from the UM atmosphere
emp(:,:) = emp_tot(:,:)+tprecip(:,:)*fr_i(:,:)
ENDIF
#if defined key_cice4
CALL cice2nemo(fresh_gbm,ztmp1,'T', 1. )
CALL cice2nemo(fsalt_gbm,ztmp2,'T', 1. )
#else
CALL cice2nemo(fresh_ai,ztmp1,'T', 1. )
CALL cice2nemo(fsalt_ai,ztmp2,'T', 1. )
#endif
! Check to avoid unphysical expression when ice is forming (ztmp1 negative)
! Otherwise we are effectively allowing ice of higher salinity than the ocean to form
! which has to be compensated for by the ocean salinity potentially going negative
! This check breaks conservation but seems reasonable until we have prognostic ice salinity
! Note the 1000.0 below is to convert from kg salt to g salt (needed for PSU)
WHERE (ztmp1(:,:).lt.0.0) ztmp2(:,:)=MAX(ztmp2(:,:),ztmp1(:,:)*sss_m(:,:)/1000.0)
sfx(:,:)=ztmp2(:,:)*1000.0
emp(:,:)=emp(:,:)-ztmp1(:,:)
fmmflx(:,:) = ztmp1(:,:) !!Joakim edit
CALL lbc_lnk( 'sbcice_cice', emp , 'T', 1.0_wp, sfx , 'T', 1.0_wp )
! Solar penetrative radiation and non solar surface heat flux
! Scale qsr and qns according to ice fraction (bulk formulae only)
IF(ksbc == jp_blk) THEN
qsr(:,:)=qsr(:,:)*(1.0-fr_i(:,:))
qns(:,:)=qns(:,:)*(1.0-fr_i(:,:))
ENDIF
! Take into account snow melting except for fully coupled when already in qns_tot
IF(ksbc == jp_purecpl) THEN
qsr(:,:)= qsr_tot(:,:)
qns(:,:)= qns_tot(:,:)
ELSE
qns(:,:)= qns(:,:)-sprecip(:,:)*Lfresh*(1.0-fr_i(:,:))
ENDIF
! Now add in ice / snow related terms
! [fswthru will be zero unless running with calc_Tsfc=T in CICE]
#if defined key_cice4
CALL cice2nemo(fswthru_gbm,ztmp1,'T', 1. )
#else
CALL cice2nemo(fswthru_ai,ztmp1,'T', 1. )
#endif
qsr(:,:)=qsr(:,:)+ztmp1(:,:)
CALL lbc_lnk( 'sbcice_cice', qsr , 'T', 1.0_wp )
DO_2D( 1, 1, 1, 1 )
nfrzmlt(ji,jj)=MAX(nfrzmlt(ji,jj),0.0)
END_2D
#if defined key_cice4
CALL cice2nemo(fhocn_gbm,ztmp1,'T', 1. )
#else
CALL cice2nemo(fhocn_ai,ztmp1,'T', 1. )
#endif
qns(:,:)=qns(:,:)+nfrzmlt(:,:)+ztmp1(:,:)
CALL lbc_lnk( 'sbcice_cice', qns , 'T', 1.0_wp )
! Prepare for the following CICE time-step
CALL cice2nemo(aice,fr_i,'T', 1. )
IF( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN
DO jl=1,ncat
CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. )
ENDDO
ENDIF
! T point to U point
! T point to V point
DO_2D( 1, 0, 1, 0 )
fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1)
fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbcice_cice', fr_iu , 'U', 1.0_wp, fr_iv , 'V', 1.0_wp )
! set the snow+ice mass
CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. )
CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. )
snwice_mass (:,:) = ( rhos * ztmp1(:,:) + rhoi * ztmp2(:,:) )
snwice_mass_b(:,:) = snwice_mass(:,:)
snwice_fmass (:,:) = ( snwice_mass(:,:) - snwice_mass_b(:,:) ) / dt
!
END SUBROUTINE cice_sbc_out
SUBROUTINE cice_sbc_hadgam( kt )
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_hadgam ***
!! ** Purpose: Prepare fields needed to pass to HadGAM3 atmosphere
!!
!!
!!---------------------------------------------------------------------
INTEGER, INTENT( in ) :: kt ! ocean time step
!!
INTEGER :: jl ! dummy loop index
INTEGER :: ierror
!!---------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)'cice_sbc_hadgam'
IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' )
ENDIF
! ! =========================== !
! ! Prepare Coupling fields !
! ! =========================== !
!
! x and y comp of ice velocity
!
CALL cice2nemo(uvel,u_ice,'F', -1. )
CALL cice2nemo(vvel,v_ice,'F', -1. )
!
! Ice concentration (CO_1) = a_i calculated at end of cice_sbc_out
!
! Snow and ice thicknesses (CO_2 and CO_3)
!
DO jl = 1, ncat
CALL cice2nemo( vsnon(:,:,jl,:), h_s(:,:,jl),'T', 1. )
CALL cice2nemo( vicen(:,:,jl,:), h_i(:,:,jl),'T', 1. )
END DO
!
END SUBROUTINE cice_sbc_hadgam
SUBROUTINE cice_sbc_final
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_final ***
!! ** Purpose: Finalize CICE
!!---------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)'cice_sbc_final'
!
CALL CICE_Finalize
!
END SUBROUTINE cice_sbc_final
SUBROUTINE cice_sbc_force (kt)
!!---------------------------------------------------------------------
!! *** ROUTINE cice_sbc_force ***
!! ** Purpose : Provide CICE forcing from files
!!
!!---------------------------------------------------------------------
!! ** Method : READ monthly flux file in NetCDF files
!!
!! snowfall
!! rainfall
!! sublimation rate
!! topmelt (category)
!! botmelt (category)
!!
!! History :
!!----------------------------------------------------------------------
USE iom
!!
INTEGER, INTENT( in ) :: kt ! ocean time step
!!
INTEGER :: ierror ! return error code
INTEGER :: ifpr ! dummy loop index
!!
CHARACTER(len=100) :: cn_dir ! Root directory for location of CICE forcing files
TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read
TYPE(FLD_N) :: sn_snow, sn_rain, sn_sblm ! informations about the fields to be read
TYPE(FLD_N) :: sn_top1, sn_top2, sn_top3, sn_top4, sn_top5
TYPE(FLD_N) :: sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5
!!
NAMELIST/namsbc_cice/ cn_dir, sn_snow, sn_rain, sn_sblm, &
& sn_top1, sn_top2, sn_top3, sn_top4, sn_top5, &
& sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5
INTEGER :: ios
!!---------------------------------------------------------------------
! ! ====================== !
IF( kt == nit000 ) THEN ! First call kt=nit000 !
! ! ====================== !
! namsbc_cice is not yet in the reference namelist
! set file information (default values)
cn_dir = './' ! directory in which the model is executed
! (NB: frequency positive => hours, negative => months)
! ! file ! frequency ! variable ! time intep ! clim ! 'yearly' or ! weights ! rotation ! landmask
! ! name ! (hours) ! name ! (T/F) ! (T/F) ! 'monthly' ! filename ! pairs ! file
sn_snow = FLD_N( 'snowfall_1m' , -1. , 'snowfall' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_rain = FLD_N( 'rainfall_1m' , -1. , 'rainfall' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_sblm = FLD_N( 'sublim_1m' , -1. , 'sublim' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top1 = FLD_N( 'topmeltn1_1m' , -1. , 'topmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top2 = FLD_N( 'topmeltn2_1m' , -1. , 'topmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top3 = FLD_N( 'topmeltn3_1m' , -1. , 'topmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top4 = FLD_N( 'topmeltn4_1m' , -1. , 'topmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_top5 = FLD_N( 'topmeltn5_1m' , -1. , 'topmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot1 = FLD_N( 'botmeltn1_1m' , -1. , 'botmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot2 = FLD_N( 'botmeltn2_1m' , -1. , 'botmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot3 = FLD_N( 'botmeltn3_1m' , -1. , 'botmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot4 = FLD_N( 'botmeltn4_1m' , -1. , 'botmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' )
sn_bot5 = FLD_N( 'botmeltn5_1m' , -1. , 'botmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' )
READ ( numnam_ref, namsbc_cice, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cice in reference namelist' )
READ ( numnam_cfg, namsbc_cice, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_cice in configuration namelist' )
IF(lwm) WRITE ( numond, namsbc_cice )
! store namelist information in an array
slf_i(jp_snow) = sn_snow ; slf_i(jp_rain) = sn_rain ; slf_i(jp_sblm) = sn_sblm
slf_i(jp_top1) = sn_top1 ; slf_i(jp_top2) = sn_top2 ; slf_i(jp_top3) = sn_top3
slf_i(jp_top4) = sn_top4 ; slf_i(jp_top5) = sn_top5 ; slf_i(jp_bot1) = sn_bot1
slf_i(jp_bot2) = sn_bot2 ; slf_i(jp_bot3) = sn_bot3 ; slf_i(jp_bot4) = sn_bot4
slf_i(jp_bot5) = sn_bot5
! set sf structure
ALLOCATE( sf(jpfld), STAT=ierror )
IF( ierror > 0 ) THEN
CALL ctl_stop( 'cice_sbc_force: unable to allocate sf structure' ) ; RETURN
ENDIF
DO ifpr= 1, jpfld
ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) )
ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) )
END DO
! fill sf with slf_i and control print
CALL fld_fill( sf, slf_i, cn_dir, 'cice_sbc_force', 'flux formulation for CICE', 'namsbc_cice' )
!
ENDIF
CALL fld_read( kt, nn_fsbc, sf ) ! Read input fields and provides the
! ! input fields at the current time-step
! set the fluxes from read fields
sprecip(:,:) = sf(jp_snow)%fnow(:,:,1)
tprecip(:,:) = sf(jp_snow)%fnow(:,:,1)+sf(jp_rain)%fnow(:,:,1)
! May be better to do this conversion somewhere else
qla_ice(:,:,1) = -rLsub*sf(jp_sblm)%fnow(:,:,1)
topmelt(:,:,1) = sf(jp_top1)%fnow(:,:,1)
topmelt(:,:,2) = sf(jp_top2)%fnow(:,:,1)
topmelt(:,:,3) = sf(jp_top3)%fnow(:,:,1)
topmelt(:,:,4) = sf(jp_top4)%fnow(:,:,1)
topmelt(:,:,5) = sf(jp_top5)%fnow(:,:,1)
botmelt(:,:,1) = sf(jp_bot1)%fnow(:,:,1)
botmelt(:,:,2) = sf(jp_bot2)%fnow(:,:,1)
botmelt(:,:,3) = sf(jp_bot3)%fnow(:,:,1)
botmelt(:,:,4) = sf(jp_bot4)%fnow(:,:,1)
botmelt(:,:,5) = sf(jp_bot5)%fnow(:,:,1)
! control print (if less than 100 time-step asked)
IF( nitend-nit000 <= 100 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) ' read forcing fluxes for CICE OK'
CALL FLUSH(numout)
ENDIF
END SUBROUTINE cice_sbc_force
SUBROUTINE nemo2cice( pn, pc, cd_type, psgn)
!!---------------------------------------------------------------------
!! *** ROUTINE nemo2cice ***
!! ** Purpose : Transfer field in NEMO array to field in CICE array.
#if defined key_nemocice_decomp
!!
!! NEMO and CICE PE sub domains are identical, hence
!! there is no need to gather or scatter data from
!! one PE configuration to another.
#else
!! Automatically gather/scatter between
!! different processors and blocks
!! ** Method : A. Ensure all haloes are filled in NEMO field (pn)
!! B. Gather pn into global array (png)
!! C. Map png into CICE global array (pcg)
!! D. Scatter pcg to CICE blocks (pc) + update haloes
#endif
!!---------------------------------------------------------------------
CHARACTER(len=1), INTENT( in ) :: &
cd_type ! nature of pn grid-point
! ! = T or F gridpoints
REAL(wp), INTENT( in ) :: &
psgn ! control of the sign change
! ! =-1 , the sign is modified following the type of b.c. used
! ! = 1 , no sign change
REAL(wp), DIMENSION(jpi,jpj) :: pn
#if !defined key_nemocice_decomp
REAL(wp), DIMENSION(jpiglo,jpjglo) :: png2
REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg
#endif
REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc
INTEGER (int_kind) :: &
field_type, &! id for type of field (scalar, vector, angle)
grid_loc ! id for location on horizontal grid
! (center, NEcorner, Nface, Eface)
INTEGER :: ji, jj, jn ! dummy loop indices
!!---------------------------------------------------------------------
! A. Ensure all haloes are filled in NEMO field (pn)
CALL lbc_lnk( 'sbcice_cice', pn , cd_type, psgn )
#if defined key_nemocice_decomp
! Copy local domain data from NEMO to CICE field
pc(:,:,1)=0.0
DO jj=2,ny_block-1
DO ji=2,nx_block-1
pc(ji,jj,1)=pn(ji-1+ji_off,jj-1+jj_off)
ENDDO
ENDDO
#else
! B. Gather pn into global array (png)
IF( jpnij > 1) THEN
CALL mppsync
CALL mppgather (pn,0,png)
CALL mppsync
ELSE
png(:,:,1)=pn(:,:)
ENDIF
! C. Map png into CICE global array (pcg)
! Need to make sure this is robust to changes in NEMO halo rows....
! (may be OK but not 100% sure)
IF(narea==1) THEN
! pcg(:,:)=0.0
DO jn=1,jpnij
DO jj=njs0all(jn),nje0all(jn)
DO ji=nis0all(jn),nie0all(jn)
png2(ji+nimppt(jn)-1,jj+njmppt(jn)-1)=png(ji,jj,jn)
ENDDO
ENDDO
ENDDO
DO jj=1,ny_global
DO ji=1,nx_global
pcg(ji,jj)=png2(ji+ji_off,jj+jj_off)
ENDDO
ENDDO
ENDIF
#endif
SELECT CASE ( cd_type )
CASE ( 'T' )
grid_loc=field_loc_center
CASE ( 'F' )
grid_loc=field_loc_NEcorner
END SELECT
SELECT CASE ( NINT(psgn) )
CASE ( -1 )
field_type=field_type_vector
CASE ( 1 )
field_type=field_type_scalar
END SELECT
#if defined key_nemocice_decomp
! Ensure CICE halos are up to date
CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type)
#else
! D. Scatter pcg to CICE blocks (pc) + update halos
CALL scatter_global(pc, pcg, 0, distrb_info, grid_loc, field_type)
#endif
END SUBROUTINE nemo2cice
SUBROUTINE cice2nemo ( pc, pn, cd_type, psgn )
!!---------------------------------------------------------------------
!! *** ROUTINE cice2nemo ***
!! ** Purpose : Transfer field in CICE array to field in NEMO array.
#if defined key_nemocice_decomp
!!
!! NEMO and CICE PE sub domains are identical, hence
!! there is no need to gather or scatter data from
!! one PE configuration to another.
#else
!! Automatically deal with scatter/gather between
!! different processors and blocks
!! ** Method : A. Gather CICE blocks (pc) into global array (pcg)
!! B. Map pcg into NEMO global array (png)
!! C. Scatter png into NEMO field (pn) for each processor
!! D. Ensure all haloes are filled in pn
#endif
!!---------------------------------------------------------------------
CHARACTER(len=1), INTENT( in ) :: &
cd_type ! nature of pn grid-point
! ! = T or F gridpoints
REAL(wp), INTENT( in ) :: &
psgn ! control of the sign change
! ! =-1 , the sign is modified following the type of b.c. used
! ! = 1 , no sign change
REAL(wp), DIMENSION(jpi,jpj) :: pn
#if defined key_nemocice_decomp
INTEGER (int_kind) :: &
field_type, & ! id for type of field (scalar, vector, angle)
grid_loc ! id for location on horizontal grid
! (center, NEcorner, Nface, Eface)
#else
REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg
#endif
REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc
INTEGER :: ji, jj, jn ! dummy loop indices
#if defined key_nemocice_decomp
SELECT CASE ( cd_type )
CASE ( 'T' )
grid_loc=field_loc_center
CASE ( 'F' )
grid_loc=field_loc_NEcorner
END SELECT
SELECT CASE ( NINT(psgn) )
CASE ( -1 )
field_type=field_type_vector
CASE ( 1 )
field_type=field_type_scalar
END SELECT
CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type)
pn(:,:)=0.0
DO_2D( 1, 0, 1, 0 )
pn(ji,jj)=pc(ji+1-ji_off,jj+1-jj_off,1)
END_2D
#else
! A. Gather CICE blocks (pc) into global array (pcg)
CALL gather_global(pcg, pc, 0, distrb_info)
! B. Map pcg into NEMO global array (png)
! Need to make sure this is robust to changes in NEMO halo rows....
! (may be OK but not spent much time thinking about it)
! Note that non-existent pcg elements may be used below, but
! the lbclnk call on pn will replace these with sensible values
IF(narea==1) THEN
png(:,:,:)=0.0
DO jn=1,jpnij
DO jj=njs0all(jn),nje0all(jn)
DO ji=nis0all(jn),nie0all(jn)
png(ji,jj,jn)=pcg(ji+nimppt(jn)-1-ji_off,jj+njmppt(jn)-1-jj_off)
ENDDO
ENDDO
ENDDO
ENDIF
! C. Scatter png into NEMO field (pn) for each processor
IF( jpnij > 1) THEN
CALL mppsync
CALL mppscatter (png,0,pn)
CALL mppsync
ELSE
pn(:,:)=png(:,:,1)
ENDIF
#endif
! D. Ensure all haloes are filled in pn
CALL lbc_lnk( 'sbcice_cice', pn , cd_type, psgn )
END SUBROUTINE cice2nemo
#else
!!----------------------------------------------------------------------
!! Default option Dummy module NO CICE sea-ice model
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE sbc_ice_cice ( kt, ksbc ) ! Dummy routine
IMPLICIT NONE
INTEGER, INTENT( in ) :: kt, ksbc
WRITE(*,*) 'sbc_ice_cice: You should not have seen this print! error?', kt
END SUBROUTINE sbc_ice_cice
SUBROUTINE cice_sbc_init (ksbc, Kbb, Kmm) ! Dummy routine
IMPLICIT NONE
INTEGER, INTENT( in ) :: ksbc
INTEGER, INTENT( in ) :: Kbb, Kmm
WRITE(*,*) 'cice_sbc_init: You should not have seen this print! error?', ksbc
END SUBROUTINE cice_sbc_init
SUBROUTINE cice_sbc_final ! Dummy routine
IMPLICIT NONE
WRITE(*,*) 'cice_sbc_final: You should not have seen this print! error?'
END SUBROUTINE cice_sbc_final
#endif
!!======================================================================
END MODULE sbcice_cice