Skip to content
Snippets Groups Projects
dynspg_ts.F90 77.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE dynspg_ts

   !! Includes ROMS wd scheme with diagnostic outputs ; puu(:,:,:,Kmm) and puu(:,:,:,Krhs) updates are commented out ! 

   !!======================================================================
   !!                   ***  MODULE  dynspg_ts  ***
   !! Ocean dynamics:  surface pressure gradient trend, split-explicit scheme
   !!======================================================================
   !! History :   1.0  ! 2004-12  (L. Bessieres, G. Madec)  Original code
   !!              -   ! 2005-11  (V. Garnier, G. Madec)  optimization
   !!              -   ! 2006-08  (S. Masson)  distributed restart using iom
   !!             2.0  ! 2007-07  (D. Storkey) calls to BDY routines
   !!              -   ! 2008-01  (R. Benshila)  change averaging method
   !!             3.2  ! 2009-07  (R. Benshila, G. Madec) Complete revisit associated to vvl reactivation
   !!             3.3  ! 2010-09  (D. Storkey, E. O'Dea) update for BDY for Shelf configurations
   !!             3.3  ! 2011-03  (R. Benshila, R. Hordoir, P. Oddo) update calculation of ub_b
   !!             3.5  ! 2013-07  (J. Chanut) Switch to Forward-backward time stepping
   !!             3.6  ! 2013-11  (A. Coward) Update for z-tilde compatibility
   !!             3.7  ! 2015-11  (J. Chanut) free surface simplification
   !!              -   ! 2016-12  (G. Madec, E. Clementi) update for Stoke-Drift divergence
   !!             4.0  ! 2017-05  (G. Madec)  drag coef. defined at t-point (zdfdrg.F90)
   !!---------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   dyn_spg_ts     : compute surface pressure gradient trend using a time-splitting scheme 
   !!   dyn_spg_ts_init: initialisation of the time-splitting scheme
   !!   ts_wgt         : set time-splitting weights for temporal averaging (or not)
   !!   ts_rst         : read/write time-splitting fields in restart file
   !!----------------------------------------------------------------------
   USE oce             ! ocean dynamics and tracers
   USE dom_oce         ! ocean space and time domain
   USE sbc_oce         ! surface boundary condition: ocean
   USE isf_oce         ! ice shelf variable (fwfisf)
   USE zdf_oce         ! vertical physics: variables
   USE zdfdrg          ! vertical physics: top/bottom drag coef.
   USE sbcapr          ! surface boundary condition: atmospheric pressure
   USE dynadv    , ONLY: ln_dynadv_vec
   USE dynvor          ! vortivity scheme indicators
   USE phycst          ! physical constants
   USE dynvor          ! vorticity term
   USE wet_dry         ! wetting/drying flux limter
   USE bdy_oce         ! open boundary
   USE bdyvol          ! open boundary volume conservation
   USE bdytides        ! open boundary condition data
   USE bdydyn2d        ! open boundary conditions on barotropic variables
   USE tide_mod        !
   USE sbcwave         ! surface wave
#if defined key_agrif
   USE agrif_oce_interp ! agrif
   USE agrif_oce
#endif
#if defined key_asminc   
   USE asminc          ! Assimilation increment
#endif
   !
   USE in_out_manager  ! I/O manager
   USE lib_mpp         ! distributed memory computing library
   USE lbclnk          ! ocean lateral boundary conditions (or mpp link)
   USE prtctl          ! Print control
   USE iom             ! IOM library
   USE restart         ! only for lrst_oce

   USE iom   ! to remove

   IMPLICIT NONE
   PRIVATE

   PUBLIC dyn_spg_ts        ! called by dyn_spg 
   PUBLIC dyn_spg_ts_init   !    -    - dyn_spg_init

   !! Time filtered arrays at baroclinic time step:
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) ::   un_adv , vn_adv   !: Advection vel. at "now" barocl. step
   !
   INTEGER, SAVE :: icycle      ! Number of barotropic sub-steps for each internal step nn_e <= 2.5 nn_e
   REAL(wp),SAVE :: rDt_e       ! Barotropic time step
   !
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:)   ::   wgtbtp1, wgtbtp2   ! 1st & 2nd weights used in time filtering of barotropic fields
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   zwz                ! ff_f/h at F points
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ftnw, ftne         ! triad of coriolis parameter
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) ::   ftsw, ftse         ! (only used with een vorticity scheme)

   REAL(wp) ::   r1_12 = 1._wp / 12._wp   ! local ratios
   REAL(wp) ::   r1_8  = 0.125_wp         !
   REAL(wp) ::   r1_4  = 0.25_wp          !
   REAL(wp) ::   r1_2  = 0.5_wp           !

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: dynspg_ts.F90 15489 2021-11-10 09:18:39Z jchanut $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   INTEGER FUNCTION dyn_spg_ts_alloc()
      !!----------------------------------------------------------------------
      !!                  ***  routine dyn_spg_ts_alloc  ***
      !!----------------------------------------------------------------------
      INTEGER :: ierr(3)
      !!----------------------------------------------------------------------
      ierr(:) = 0
      !
      ALLOCATE( wgtbtp1(3*nn_e), wgtbtp2(3*nn_e), zwz(jpi,jpj), STAT=ierr(1) )
      IF( ln_dynvor_een .OR. ln_dynvor_eeT )   &
         &     ALLOCATE( ftnw(jpi,jpj) , ftne(jpi,jpj) , ftsw(jpi,jpj) , ftse(jpi,jpj), STAT=ierr(2)   )
         !
      ALLOCATE( un_adv(jpi,jpj), vn_adv(jpi,jpj)                    , STAT=ierr(3) )
      !
      dyn_spg_ts_alloc = MAXVAL( ierr(:) )
      !
      CALL mpp_sum( 'dynspg_ts', dyn_spg_ts_alloc )
      IF( dyn_spg_ts_alloc /= 0 )   CALL ctl_stop( 'STOP', 'dyn_spg_ts_alloc: failed to allocate arrays' )
      !
   END FUNCTION dyn_spg_ts_alloc


   SUBROUTINE dyn_spg_ts( kt, Kbb, Kmm, Krhs, puu, pvv, pssh, puu_b, pvv_b, Kaa, k_only_ADV )
      !!----------------------------------------------------------------------
      !!
      !! ** Purpose : - Compute the now trend due to the explicit time stepping
      !!              of the quasi-linear barotropic system, and add it to the
      !!              general momentum trend. 
      !!
      !! ** Method  : - split-explicit schem (time splitting) :
      !!      Barotropic variables are advanced from internal time steps
      !!      "n"   to "n+1" if ln_bt_fw=T
      !!      or from 
      !!      "n-1" to "n+1" if ln_bt_fw=F
      !!      thanks to a generalized forward-backward time stepping (see ref. below).
      !!
      !! ** Action :
      !!      -Update the filtered free surface at step "n+1"      : pssh(:,:,Kaa)
      !!      -Update filtered barotropic velocities at step "n+1" : puu_b(:,:,:,Kaa), vv_b(:,:,:,Kaa)
      !!      -Compute barotropic advective fluxes at step "n"     : un_adv, vn_adv
      !!      These are used to advect tracers and are compliant with discrete
      !!      continuity equation taken at the baroclinic time steps. This 
      !!      ensures tracers conservation.
      !!      - (puu(:,:,:,Krhs), pvv(:,:,:,Krhs)) momentum trend updated with barotropic component.
      !!
      !! References : Shchepetkin and McWilliams, Ocean Modelling, 2005. 
      !!---------------------------------------------------------------------
      INTEGER                             , INTENT( in )  ::  kt                  ! ocean time-step index
      INTEGER                             , INTENT( in )  ::  Kbb, Kmm, Krhs, Kaa ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) ::  puu, pvv            ! ocean velocities and RHS of momentum equation
      REAL(wp), DIMENSION(jpi,jpj,jpt)    , INTENT(inout) ::  pssh, puu_b, pvv_b  ! SSH and barotropic velocities at main time levels
      INTEGER , OPTIONAL                  , INTENT( in )  ::  k_only_ADV          ! only Advection in the RHS
      !
      INTEGER  ::   ji, jj, jk, jn        ! dummy loop indices
      LOGICAL  ::   ll_fw_start           ! =T : forward integration 
      LOGICAL  ::   ll_init               ! =T : special startup of 2d equations
      INTEGER  ::   noffset               ! local integers  : time offset for bdy update
      REAL(wp) ::   r1_Dt_b, z1_hu, z1_hv          ! local scalars
      REAL(wp) ::   za0, za1, za2, za3              !   -      -
      REAL(wp) ::   zztmp, zldg               !   -      -
      REAL(wp) ::   zhu_bck, zhv_bck, zhdiv         !   -      -
      REAL(wp) ::   zun_save, zvn_save              !   -      -
      REAL(wp), DIMENSION(jpi,jpj) :: zu_trd, zu_frc, zu_spg, zssh_frc
      REAL(wp), DIMENSION(jpi,jpj) :: zv_trd, zv_frc, zv_spg
      REAL(wp), DIMENSION(jpi,jpj) :: zsshu_a, zhup2_e, zhtp2_e
      REAL(wp), DIMENSION(jpi,jpj) :: zsshv_a, zhvp2_e, zsshp2_e
      REAL(wp), DIMENSION(jpi,jpj) :: zCdU_u, zCdU_v   ! top/bottom stress at u- & v-points
      REAL(wp), DIMENSION(jpi,jpj) :: zhU, zhV         ! fluxes
!!st#if defined key_qco 
!!st      REAL(wp), DIMENSION(jpi, jpj, jpk) :: ze3u, ze3v
!!st#endif
      !
      REAL(wp) ::   zwdramp                     ! local scalar - only used if ln_wd_dl = .True. 

      INTEGER  :: iwdg, jwdg, kwdg   ! short-hand values for the indices of the output point

      REAL(wp) ::   zepsilon, zgamma            !   -      -
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zcpx, zcpy   ! Wetting/Dying gravity filter coef.
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztwdmask, zuwdmask, zvwdmask ! ROMS wetting and drying masks at t,u,v points
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zuwdav2, zvwdav2    ! averages over the sub-steps of zuwdmask and zvwdmask
      REAL(wp) ::   zt0substep !   Time of day at the beginning of the time substep
      !!----------------------------------------------------------------------
      !
      IF( ln_wd_il ) ALLOCATE( zcpx(jpi,jpj), zcpy(jpi,jpj) )
      !                                         !* Allocate temporary arrays
      IF( ln_wd_dl ) ALLOCATE( ztwdmask(jpi,jpj), zuwdmask(jpi,jpj), zvwdmask(jpi,jpj), zuwdav2(jpi,jpj), zvwdav2(jpi,jpj))
      !
      zwdramp = r_rn_wdmin1               ! simplest ramp 
!     zwdramp = 1._wp / (rn_wdmin2 - rn_wdmin1) ! more general ramp
      !                                         ! inverse of baroclinic time step 
      r1_Dt_b = 1._wp / rDt 
      !
      ll_init     = ln_bt_av                    ! if no time averaging, then no specific restart 
      ll_fw_start = .FALSE.
      !                                         ! time offset in steps for bdy data update
      IF( .NOT.ln_bt_fw ) THEN   ;   noffset = - nn_e
      ELSE                       ;   noffset =   0 
      ENDIF
      !
      IF( kt == nit000 ) THEN                   !* initialisation
         !
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) 'dyn_spg_ts : surface pressure gradient trend'
         IF(lwp) WRITE(numout,*) '~~~~~~~~~~   free surface with time splitting'
         IF(lwp) WRITE(numout,*)
         !
         IF( l_1st_euler )   ll_init=.TRUE.
         !
         IF( ln_bt_fw .OR. l_1st_euler ) THEN
            ll_fw_start =.TRUE.
            noffset     = 0
         ELSE
            ll_fw_start =.FALSE.
         ENDIF
         !                    ! Set averaging weights and cycle length:
         CALL ts_wgt( ln_bt_av, ll_fw_start, icycle, wgtbtp1, wgtbtp2 )
         !
      ELSEIF( kt == nit000 + 1 ) THEN           !* initialisation 2nd time-step
         !
         IF( .NOT.ln_bt_fw ) THEN
            ! If we did an Euler timestep on the first timestep we need to reset ll_fw_start
            ! and the averaging weights. We don't have an easy way of telling whether we did
            ! an Euler timestep on the first timestep (because l_1st_euler is reset to .false.
            ! at the end of the first timestep) so just do this in all cases. 
            ll_fw_start = .FALSE.
            CALL ts_wgt( ln_bt_av, ll_fw_start, icycle, wgtbtp1, wgtbtp2 )
         ENDIF
         !
      ENDIF
      !
      ! -----------------------------------------------------------------------------
      !  Phase 1 : Coupling between general trend and barotropic estimates (1st step)
      ! -----------------------------------------------------------------------------
      !      
      !
      !                                   !=  zu_frc =  1/H e3*d/dt(Ua)  =!  (Vertical mean of Ua, the 3D trends)
      !                                   !  ---------------------------  !
#if defined key_qco 
      zu_frc(:,:) = SUM( e3u_0(:,:,:  ) * puu(:,:,:,Krhs) * umask(:,:,:), DIM=3 ) * r1_hu_0(:,:)
      zv_frc(:,:) = SUM( e3v_0(:,:,:  ) * pvv(:,:,:,Krhs) * vmask(:,:,:), DIM=3 ) * r1_hv_0(:,:)
#else
      zu_frc(:,:) = SUM( e3u(:,:,:,Kmm) * puu(:,:,:,Krhs) * umask(:,:,:), DIM=3 ) * r1_hu(:,:,Kmm)
      zv_frc(:,:) = SUM( e3v(:,:,:,Kmm) * pvv(:,:,:,Krhs) * vmask(:,:,:), DIM=3 ) * r1_hv(:,:,Kmm)
#endif 
      !
      !
      !                                   !=  U(Krhs) => baroclinic trend  =!   (remove its vertical mean)
      DO jk = 1, jpkm1                    !  -----------------------------  !
         puu(:,:,jk,Krhs) = ( puu(:,:,jk,Krhs) - zu_frc(:,:) ) * umask(:,:,jk)
         pvv(:,:,jk,Krhs) = ( pvv(:,:,jk,Krhs) - zv_frc(:,:) ) * vmask(:,:,jk)
      END DO
      
!!gm  Question here when removing the Vertically integrated trends, we remove the vertically integrated NL trends on momentum....
!!gm  Is it correct to do so ?   I think so...
      
      !                                   !=  remove 2D Coriolis trend  =!
      !                                   !  --------------------------  !
      !
      IF( kt == nit000 .OR. .NOT. ln_linssh )   CALL dyn_cor_2D_init( Kmm )   ! Set zwz, the barotropic Coriolis force coefficient
      !                      ! recompute zwz = f/depth  at every time step for (.NOT.ln_linssh) as the water colomn height changes
      !
      IF( .NOT. PRESENT(k_only_ADV) ) THEN   !* remove the 2D Coriolis trend  
         zhU(:,:) = puu_b(:,:,Kmm) * hu(:,:,Kmm) * e2u(:,:)        ! now fluxes 
         zhV(:,:) = pvv_b(:,:,Kmm) * hv(:,:,Kmm) * e1v(:,:)        ! NB: FULL domain : put a value in last row and column
         !
         CALL dyn_cor_2d( ht(:,:), hu(:,:,Kmm), hv(:,:,Kmm), puu_b(:,:,Kmm), pvv_b(:,:,Kmm), zhU, zhV,  &   ! <<== in
            &                                                                          zu_trd, zv_trd   )   ! ==>> out
         !
         DO_2D( 0, 0, 0, 0 )                          ! Remove coriolis term (and possibly spg) from barotropic trend
            zu_frc(ji,jj) = zu_frc(ji,jj) - zu_trd(ji,jj) * ssumask(ji,jj)
            zv_frc(ji,jj) = zv_frc(ji,jj) - zv_trd(ji,jj) * ssvmask(ji,jj)
         END_2D
      ENDIF
      !
      !                                   !=  Add bottom stress contribution from baroclinic velocities  =!
      !                                   !  -----------------------------------------------------------  !
      IF( PRESENT(k_only_ADV) ) THEN         !* only Advection in the RHS : provide the barotropic bottom drag coefficients
         DO_2D( 0, 0, 0, 0 )
            zCdU_u(ji,jj) = r1_2*( rCdU_bot(ji+1,jj)+rCdU_bot(ji,jj) )
            zCdU_v(ji,jj) = r1_2*( rCdU_bot(ji,jj+1)+rCdU_bot(ji,jj) )
         END_2D
      ELSE				     !* remove baroclinic drag AND provide the barotropic drag coefficients
         CALL dyn_drg_init( Kbb, Kmm, puu, pvv, puu_b, pvv_b, zu_frc, zv_frc, zCdU_u, zCdU_v )
      ENDIF
      !
      !                                   !=  Add atmospheric pressure forcing  =!
      !                                   !  ----------------------------------  !
      IF( ln_apr_dyn ) THEN
         IF( ln_bt_fw ) THEN                          ! FORWARD integration: use kt+1/2 pressure (NOW+1/2)
            DO_2D( 0, 0, 0, 0 )
               zu_frc(ji,jj) = zu_frc(ji,jj) + grav * (  ssh_ib (ji+1,jj  ) - ssh_ib (ji,jj) ) * r1_e1u(ji,jj)
               zv_frc(ji,jj) = zv_frc(ji,jj) + grav * (  ssh_ib (ji  ,jj+1) - ssh_ib (ji,jj) ) * r1_e2v(ji,jj)
            END_2D
         ELSE                                         ! CENTRED integration: use kt-1/2 + kt+1/2 pressure (NOW)
            zztmp = grav * r1_2
            DO_2D( 0, 0, 0, 0 )
               zu_frc(ji,jj) = zu_frc(ji,jj) + zztmp * (  ssh_ib (ji+1,jj  ) - ssh_ib (ji,jj)  &
                    &                                   + ssh_ibb(ji+1,jj  ) - ssh_ibb(ji,jj)  ) * r1_e1u(ji,jj)
               zv_frc(ji,jj) = zv_frc(ji,jj) + zztmp * (  ssh_ib (ji  ,jj+1) - ssh_ib (ji,jj)  &
                    &                                   + ssh_ibb(ji  ,jj+1) - ssh_ibb(ji,jj)  ) * r1_e2v(ji,jj)
            END_2D
         ENDIF
      ENDIF
      !
      !                                   !=  Add wind forcing  =!
      !                                   !  ------------------  !
      IF( ln_bt_fw ) THEN
         DO_2D( 0, 0, 0, 0 )
            zu_frc(ji,jj) =  zu_frc(ji,jj) + r1_rho0 * utau(ji,jj) * r1_hu(ji,jj,Kmm)
            zv_frc(ji,jj) =  zv_frc(ji,jj) + r1_rho0 * vtau(ji,jj) * r1_hv(ji,jj,Kmm)
         END_2D
      ELSE
         zztmp = r1_rho0 * r1_2
         DO_2D( 0, 0, 0, 0 )
            zu_frc(ji,jj) =  zu_frc(ji,jj) + zztmp * ( utau_b(ji,jj) + utau(ji,jj) ) * r1_hu(ji,jj,Kmm)
            zv_frc(ji,jj) =  zv_frc(ji,jj) + zztmp * ( vtau_b(ji,jj) + vtau(ji,jj) ) * r1_hv(ji,jj,Kmm)
         END_2D
      ENDIF  
      !
      !              !----------------!
      !              !==  sssh_frc  ==!   Right-Hand-Side of the barotropic ssh equation   (over the FULL domain)
      !              !----------------!
      !                                   !=  Net water flux forcing applied to a water column  =!
      !                                   ! ---------------------------------------------------  !
      IF (ln_bt_fw) THEN                          ! FORWARD integration: use kt+1/2 fluxes (NOW+1/2)
         zssh_frc(:,:) = r1_rho0 * ( emp(:,:) - rnf(:,:) - fwfisf_cav(:,:) - fwfisf_par(:,:) )
      ELSE                                        ! CENTRED integration: use kt-1/2 + kt+1/2 fluxes (NOW)
         zztmp = r1_rho0 * r1_2
         zssh_frc(:,:) = zztmp * (   emp(:,:)        + emp_b(:,:)          &
            &                      - rnf(:,:)        - rnf_b(:,:)          &
            &                      - fwfisf_cav(:,:) - fwfisf_cav_b(:,:)   &
            &                      - fwfisf_par(:,:) - fwfisf_par_b(:,:)   )
      ENDIF
      !                                   !=  Add Stokes drift divergence  =!   (if exist)
      IF( ln_sdw ) THEN                   !  -----------------------------  !
         zssh_frc(:,:) = zssh_frc(:,:) + div_sd(:,:)
      ENDIF
      !
      !                                         ! ice sheet coupling
      IF ( ln_isf .AND. ln_isfcpl ) THEN
         !
         ! ice sheet coupling
         IF( ln_rstart .AND. kt == nit000 ) THEN
            zssh_frc(:,:) = zssh_frc(:,:) + risfcpl_ssh(:,:)
         END IF
         !
         ! conservation option
         IF( ln_isfcpl_cons ) THEN
            zssh_frc(:,:) = zssh_frc(:,:) + risfcpl_cons_ssh(:,:)
         END IF
         !
      END IF
      !
#if defined key_asminc
      !                                   !=  Add the IAU weighted SSH increment  =!
      !                                   !  ------------------------------------  !
      IF( lk_asminc .AND. ln_sshinc .AND. ln_asmiau ) THEN
         zssh_frc(:,:) = zssh_frc(:,:) - ssh_iau(:,:)
      ENDIF
#endif
      !                                   != Fill boundary data arrays for AGRIF
      !                                   ! ------------------------------------
#if defined key_agrif
         IF( .NOT.Agrif_Root() ) CALL agrif_dta_ts( kt )
#endif
      !
      ! -----------------------------------------------------------------------
      !  Phase 2 : Integration of the barotropic equations 
      ! -----------------------------------------------------------------------
      !
      !                                             ! ==================== !
      !                                             !    Initialisations   !
      !                                             ! ==================== !  
      ! Initialize barotropic variables:      
      IF( ll_init )THEN
         sshbb_e(:,:) = 0._wp
         ubb_e  (:,:) = 0._wp
         vbb_e  (:,:) = 0._wp
         sshb_e (:,:) = 0._wp
         ub_e   (:,:) = 0._wp
         vb_e   (:,:) = 0._wp
      ENDIF
      !
      IF( ln_linssh ) THEN    ! mid-step ocean depth is fixed (hup2_e=hu_n=hu_0)
         zhup2_e(:,:) = hu_0(:,:)
         zhvp2_e(:,:) = hv_0(:,:)
         zhtp2_e(:,:) = ht_0(:,:)
      ENDIF
      !
      IF( ln_bt_fw ) THEN                 ! FORWARD integration: start from NOW fields                    
         sshn_e(:,:) =    pssh (:,:,Kmm)            
         un_e  (:,:) =    puu_b(:,:,Kmm)            
         vn_e  (:,:) =    pvv_b(:,:,Kmm)
         !
         hu_e  (:,:) =    hu(:,:,Kmm)       
         hv_e  (:,:) =    hv(:,:,Kmm) 
         hur_e (:,:) = r1_hu(:,:,Kmm)    
         hvr_e (:,:) = r1_hv(:,:,Kmm)
      ELSE                                ! CENTRED integration: start from BEFORE fields
         sshn_e(:,:) =    pssh (:,:,Kbb)
         un_e  (:,:) =    puu_b(:,:,Kbb)         
         vn_e  (:,:) =    pvv_b(:,:,Kbb)
         !
         hu_e  (:,:) =    hu(:,:,Kbb)       
         hv_e  (:,:) =    hv(:,:,Kbb) 
         hur_e (:,:) = r1_hu(:,:,Kbb)    
         hvr_e (:,:) = r1_hv(:,:,Kbb)
      ENDIF
      !
      ! Initialize sums:
      puu_b (:,:,Kaa) = 0._wp       ! After barotropic velocities (or transport if flux form)          
      pvv_b (:,:,Kaa) = 0._wp
      pssh  (:,:,Kaa) = 0._wp       ! Sum for after averaged sea level
      un_adv(:,:)     = 0._wp       ! Sum for now transport issued from ts loop
      vn_adv(:,:)     = 0._wp
      !
      IF( ln_wd_dl ) THEN
         zuwdmask(:,:) = 0._wp  ! set to zero for definiteness (not sure this is necessary) 
         zvwdmask(:,:) = 0._wp  ! 
         zuwdav2 (:,:) = 0._wp 
         zvwdav2 (:,:) = 0._wp   
      END IF 

      !                                             ! ==================== !
      DO jn = 1, icycle                             !  sub-time-step loop  !
         !                                          ! ==================== !
         !
         l_full_nf_update = jn == icycle   ! false: disable full North fold update (performances) for jn = 1 to icycle-1
         !
         !                    !==  Update the forcing ==! (BDY and tides)
         !
         IF( ln_bdy      .AND. ln_tide )   CALL bdy_dta_tides( kt, kit=jn, pt_offset= REAL(noffset+1,wp) )
         ! Update tide potential at the beginning of current time substep
         IF( ln_tide_pot .AND. ln_tide ) THEN
            zt0substep = REAL(nsec_day, wp) - 0.5_wp*rn_Dt + (jn + noffset - 1) * rn_Dt / REAL(nn_e, wp)
            CALL upd_tide(zt0substep, Kmm)
         END IF
         !
         !                    !==  extrapolation at mid-step  ==!   (jn+1/2)
         !
         !                       !* Set extrapolation coefficients for predictor step:
         IF ((jn<3).AND.ll_init) THEN      ! Forward           
           za1 = 1._wp                                          
           za2 = 0._wp                        
           za3 = 0._wp                        
         ELSE                              ! AB3-AM4 Coefficients: bet=0.281105 
           za1 =  1.781105_wp              ! za1 =   3/2 +   bet
           za2 = -1.06221_wp               ! za2 = -(1/2 + 2*bet)
           za3 =  0.281105_wp              ! za3 = bet
         ENDIF
         !
         !                       !* Extrapolate barotropic velocities at mid-step (jn+1/2)
         !--        m+1/2               m                m-1           m-2       --!
         !--       u      = (3/2+beta) u   -(1/2+2beta) u      + beta u          --!
         !-------------------------------------------------------------------------!
         ua_e(:,:) = za1 * un_e(:,:) + za2 * ub_e(:,:) + za3 * ubb_e(:,:)
         va_e(:,:) = za1 * vn_e(:,:) + za2 * vb_e(:,:) + za3 * vbb_e(:,:)

         IF( .NOT.ln_linssh ) THEN                        !* Update ocean depth (variable volume case only)
            !                                             !  ------------------
            ! Extrapolate Sea Level at step jit+0.5:
            !--         m+1/2                 m                  m-1             m-2       --!
            !--      ssh      = (3/2+beta) ssh   -(1/2+2beta) ssh      + beta ssh          --!
            !--------------------------------------------------------------------------------!
            zsshp2_e(:,:) = za1 * sshn_e(:,:)  + za2 * sshb_e(:,:) + za3 * sshbb_e(:,:)
            
            ! set wetting & drying mask at tracer points for this barotropic mid-step
            IF( ln_wd_dl )   CALL wad_tmsk( zsshp2_e, ztwdmask )
            !
            !                          ! ocean t-depth at mid-step
            zhtp2_e(:,:) = ht_0(:,:) + zsshp2_e(:,:)
            !
            !                          ! ocean u- and v-depth at mid-step   (separate DO-loops remove the need of a lbc_lnk)
#if defined key_qcoTest_FluxForm
            !                                ! 'key_qcoTest_FluxForm' : simple ssh average
            DO_2D( 1, 0, 1, 1 )   ! not jpi-column
               zhup2_e(ji,jj) = hu_0(ji,jj) + r1_2 * (  zsshp2_e(ji,jj) + zsshp2_e(ji+1,jj  )  ) * ssumask(ji,jj)
            END_2D
            DO_2D( 1, 1, 1, 0 )
               zhvp2_e(ji,jj) = hv_0(ji,jj) + r1_2 * (  zsshp2_e(ji,jj) + zsshp2_e(ji  ,jj+1)  ) * ssvmask(ji,jj)
            END_2D
#else
            !                                ! no 'key_qcoTest_FluxForm' : surface weighted ssh average
            DO_2D( 1, 0, 1, 1 )   ! not jpi-column
               zhup2_e(ji,jj) = hu_0(ji,jj) + r1_2 * r1_e1e2u(ji,jj)                        &
                    &                              * (  e1e2t(ji  ,jj) * zsshp2_e(ji  ,jj)  &
                    &                                 + e1e2t(ji+1,jj) * zsshp2_e(ji+1,jj)  ) * ssumask(ji,jj)
            END_2D
            DO_2D( 1, 1, 1, 0 )   ! not jpj-row
               zhvp2_e(ji,jj) = hv_0(ji,jj) + r1_2 * r1_e1e2v(ji,jj)                        &
                    &                              * (  e1e2t(ji,jj  ) * zsshp2_e(ji,jj  )  &
                    &                                 + e1e2t(ji,jj+1) * zsshp2_e(ji,jj+1)  ) * ssvmask(ji,jj)
            END_2D
#endif               
            !
         ENDIF
         !
         !                    !==  after SSH  ==!   (jn+1)
         !
         !                             ! update (ua_e,va_e) to enforce volume conservation at open boundaries
         !                             ! values of zhup2_e and zhvp2_e on the halo are not needed in bdy_vol2d
         IF( ln_bdy .AND. ln_vol ) CALL bdy_vol2d( kt, jn, ua_e, va_e, zhup2_e, zhvp2_e )
         !      
         !                             ! resulting flux at mid-step (not over the full domain)
         DO_2D( 1, 0, 1, 1 )   ! not jpi-column
            zhU(ji,jj) = e2u(ji,jj) * ua_e(ji,jj) * zhup2_e(ji,jj)
         END_2D
         DO_2D( 1, 1, 1, 0 )   ! not jpj-row
            zhV(ji,jj) = e1v(ji,jj) * va_e(ji,jj) * zhvp2_e(ji,jj)
         END_2D
         !
#if defined key_agrif
         ! Set fluxes during predictor step to ensure volume conservation
         IF( .NOT.Agrif_Root() .AND. ln_bt_fw ) CALL agrif_dyn_ts_flux( jn, zhU, zhV )
#endif
         IF( ln_wd_il )   CALL wad_lmt_bt(zhU, zhV, sshn_e, zssh_frc, rDt_e)    !!gm wad_lmt_bt use of lbc_lnk on zhU, zhV

         IF( ln_wd_dl ) THEN           ! un_e and vn_e are set to zero at faces where 
            !                          ! the direction of the flow is from dry cells
            CALL wad_Umsk( ztwdmask, zhU, zhV, un_e, vn_e, zuwdmask, zvwdmask )   ! not jpi colomn for U, not jpj row for V
            !
         ENDIF    
         !
         !
         !     Compute Sea Level at step jit+1
         !--           m+1        m                               m+1/2          --!
         !--        ssh    =  ssh   - delta_t' * [ frc + div( flux      ) ]      --!
         !-------------------------------------------------------------------------!
         DO_2D( 0, 0, 0, 0 )
            zhdiv = (   zhU(ji,jj) - zhU(ji-1,jj) + zhV(ji,jj) - zhV(ji,jj-1)   ) * r1_e1e2t(ji,jj)
            ssha_e(ji,jj) = (  sshn_e(ji,jj) - rDt_e * ( zssh_frc(ji,jj) + zhdiv )  ) * ssmask(ji,jj)
         END_2D
         !
         CALL lbc_lnk( 'dynspg_ts', ssha_e, 'T', 1._wp,  zhU, 'U', -1._wp,  zhV, 'V', -1._wp )
         !
         ! Duplicate sea level across open boundaries (this is only cosmetic if linssh=T)
         IF( ln_bdy )   CALL bdy_ssh( ssha_e )
#if defined key_agrif
         IF( .NOT.Agrif_Root() )   CALL agrif_ssh_ts( jn )
#endif
         !
         !                             ! Sum over sub-time-steps to compute advective velocities
         za2 = wgtbtp2(jn)             ! zhU, zhV hold fluxes extrapolated at jn+0.5
         un_adv(:,:) = un_adv(:,:) + za2 * zhU(:,:) * r1_e2u(:,:)
         vn_adv(:,:) = vn_adv(:,:) + za2 * zhV(:,:) * r1_e1v(:,:)
         ! sum over sub-time-steps to decide which baroclinic velocities to set to zero (zuwdav2 is only used when ln_wd_dl_bc=True) 
         IF ( ln_wd_dl_bc ) THEN
            DO_2D( 1, 0, 1, 1 )   ! not jpi-column
               zuwdav2(ji,jj) = zuwdav2(ji,jj) + za2 * zuwdmask(ji,jj)
            END_2D
            DO_2D( 1, 1, 1, 0 )   ! not jpj-row
               zvwdav2(ji,jj) = zvwdav2(ji,jj) + za2 * zvwdmask(ji,jj)
            END_2D
         END IF
         !
         !  
         ! Sea Surface Height at u-,v-points (vvl case only)
         IF( .NOT.ln_linssh ) THEN
#if defined key_qcoTest_FluxForm
            !                                ! 'key_qcoTest_FluxForm' : simple ssh average
            DO_2D( 1, 0, 1, 1 )
               zsshu_a(ji,jj) = r1_2 * (  ssha_e(ji,jj) + ssha_e(ji+1,jj  )  ) * ssumask(ji,jj)
            END_2D
            DO_2D( 1, 1, 1, 0 )
               zsshv_a(ji,jj) = r1_2 * (  ssha_e(ji,jj) + ssha_e(ji  ,jj+1)  ) * ssvmask(ji,jj)
            END_2D
#else
            DO_2D( 0, 0, 0, 0 )
               zsshu_a(ji,jj) = r1_2 * r1_e1e2u(ji,jj) * ( e1e2t(ji  ,jj  ) * ssha_e(ji  ,jj  )   &
                  &                                      + e1e2t(ji+1,jj  ) * ssha_e(ji+1,jj  ) ) * ssumask(ji,jj)
               zsshv_a(ji,jj) = r1_2 * r1_e1e2v(ji,jj) * ( e1e2t(ji  ,jj  ) * ssha_e(ji  ,jj  )   &
                  &                                      + e1e2t(ji  ,jj+1) * ssha_e(ji  ,jj+1) ) * ssvmask(ji,jj)
            END_2D
#endif
         ENDIF
         !         
         ! Half-step back interpolation of SSH for surface pressure computation at step jit+1/2
         !--            m+1/2           m+1              m               m-1              m-2     --!
         !--        ssh'    =  za0 * ssh     +  za1 * ssh   +  za2 * ssh      +  za3 * ssh        --!
         !------------------------------------------------------------------------------------------!
         CALL ts_bck_interp( jn, ll_init, za0, za1, za2, za3 )   ! coeficients of the interpolation
         zsshp2_e(:,:) = za0 *  ssha_e(:,:) + za1 *  sshn_e (:,:)   &
            &          + za2 *  sshb_e(:,:) + za3 *  sshbb_e(:,:)
         !
         !                             ! Surface pressure gradient
         zldg = ( 1._wp - rn_scal_load ) * grav    ! local factor
         DO_2D( 0, 0, 0, 0 )
            zu_spg(ji,jj) = - zldg * ( zsshp2_e(ji+1,jj) - zsshp2_e(ji,jj) ) * r1_e1u(ji,jj)
            zv_spg(ji,jj) = - zldg * ( zsshp2_e(ji,jj+1) - zsshp2_e(ji,jj) ) * r1_e2v(ji,jj)
         END_2D
         IF( ln_wd_il ) THEN        ! W/D : gravity filters applied on pressure gradient
            CALL wad_spg( zsshp2_e, zcpx, zcpy )   ! Calculating W/D gravity filters
            DO_2D( 0, 0, 0, 0 )
               zu_spg(ji,jj) = zu_spg(ji,jj) * zcpx(ji,jj)
               zv_spg(ji,jj) = zv_spg(ji,jj) * zcpy(ji,jj)
            END_2D
         ENDIF
         !
         ! Add Coriolis trend:
         ! zwz array below or triads normally depend on sea level with ln_linssh=F and should be updated
         ! at each time step. We however keep them constant here for optimization.
         ! Recall that zhU and zhV hold fluxes at jn+0.5 (extrapolated not backward interpolated)
         CALL dyn_cor_2d( zhtp2_e, zhup2_e, zhvp2_e, ua_e, va_e, zhU, zhV,    zu_trd, zv_trd   )
         !
         ! Add tidal astronomical forcing if defined
         IF ( ln_tide .AND. ln_tide_pot ) THEN
            DO_2D( 0, 0, 0, 0 )
               zu_trd(ji,jj) = zu_trd(ji,jj) + grav * ( pot_astro(ji+1,jj) - pot_astro(ji,jj) ) * r1_e1u(ji,jj)
               zv_trd(ji,jj) = zv_trd(ji,jj) + grav * ( pot_astro(ji,jj+1) - pot_astro(ji,jj) ) * r1_e2v(ji,jj)
            END_2D
         ENDIF
         !
         ! Add bottom stresses:
!jth do implicitly instead
         IF ( .NOT. ll_wd ) THEN ! Revert to explicit for bit comparison tests in non wad runs
            DO_2D( 0, 0, 0, 0 )
               zu_trd(ji,jj) = zu_trd(ji,jj) + zCdU_u(ji,jj) * un_e(ji,jj) * hur_e(ji,jj)
               zv_trd(ji,jj) = zv_trd(ji,jj) + zCdU_v(ji,jj) * vn_e(ji,jj) * hvr_e(ji,jj)
            END_2D
         ENDIF
         !
         ! Set next velocities:
         !     Compute barotropic speeds at step jit+1    (h : total height of the water colomn)
         !--                              VECTOR FORM
         !--   m+1                 m               /                                                       m+1/2           \    --!
         !--  u     =             u   + delta_t' * \         (1-r)*g * grad_x( ssh') -         f * k vect u      +     frc /    --!
         !--                                                                                                                    --!
         !--                             FLUX FORM                                                                              --!
         !--  m+1   __1__  /  m    m               /  m+1/2                             m+1/2              m+1/2    n      \ \  --!
         !-- u    =   m+1 |  h  * u   + delta_t' * \ h     * (1-r)*g * grad_x( ssh') - h     * f * k vect u      + h * frc /  | --!
         !--         h     \                                                                                                 /  --!
         !------------------------------------------------------------------------------------------------------------------------!
         IF( ln_dynadv_vec .OR. ln_linssh ) THEN      !* Vector form
            DO_2D( 0, 0, 0, 0 )
               ua_e(ji,jj) = (                                 un_e(ji,jj)   & 
                         &     + rDt_e * (                   zu_spg(ji,jj)   &
                         &                                 + zu_trd(ji,jj)   &
                         &                                 + zu_frc(ji,jj) ) & 
                         &   ) * ssumask(ji,jj)

               va_e(ji,jj) = (                                 vn_e(ji,jj)   &
                         &     + rDt_e * (                   zv_spg(ji,jj)   &
                         &                                 + zv_trd(ji,jj)   &
                         &                                 + zv_frc(ji,jj) ) &
                         &   ) * ssvmask(ji,jj)
            END_2D
            !
         ELSE                           !* Flux form
            DO_2D( 0, 0, 0, 0 )
               !                    ! hu_e, hv_e hold depth at jn,  zhup2_e, zhvp2_e hold extrapolated depth at jn+1/2
               !                    ! backward interpolated depth used in spg terms at jn+1/2
#if defined key_qcoTest_FluxForm
            !                                ! 'key_qcoTest_FluxForm' : simple ssh average
               zhu_bck = hu_0(ji,jj) + r1_2 * (  zsshp2_e(ji,jj) + zsshp2_e(ji+1,jj  )  ) * ssumask(ji,jj)
               zhv_bck = hv_0(ji,jj) + r1_2 * (  zsshp2_e(ji,jj) + zsshp2_e(ji  ,jj+1)  ) * ssvmask(ji,jj)
#else
               zhu_bck = hu_0(ji,jj) + r1_2*r1_e1e2u(ji,jj) * (  e1e2t(ji  ,jj) * zsshp2_e(ji  ,jj)    &
                    &                                          + e1e2t(ji+1,jj) * zsshp2_e(ji+1,jj)  ) * ssumask(ji,jj)
               zhv_bck = hv_0(ji,jj) + r1_2*r1_e1e2v(ji,jj) * (  e1e2t(ji,jj  ) * zsshp2_e(ji,jj  )    &
                    &                                          + e1e2t(ji,jj+1) * zsshp2_e(ji,jj+1)  ) * ssvmask(ji,jj)
#endif
               !                    ! inverse depth at jn+1
               z1_hu = ssumask(ji,jj) / ( hu_0(ji,jj) + zsshu_a(ji,jj) + 1._wp - ssumask(ji,jj) )
               z1_hv = ssvmask(ji,jj) / ( hv_0(ji,jj) + zsshv_a(ji,jj) + 1._wp - ssvmask(ji,jj) )
               !
               ua_e(ji,jj) = (               hu_e  (ji,jj) *   un_e (ji,jj)      & 
                    &            + rDt_e * (  zhu_bck        * zu_spg (ji,jj)  &   !
                    &                       + zhup2_e(ji,jj) * zu_trd (ji,jj)  &   !
                    &                       +  hu(ji,jj,Kmm) * zu_frc (ji,jj)  )   ) * z1_hu
               !
               va_e(ji,jj) = (               hv_e  (ji,jj) *   vn_e (ji,jj)      &
                    &            + rDt_e * (  zhv_bck        * zv_spg (ji,jj)  &   !
                    &                       + zhvp2_e(ji,jj) * zv_trd (ji,jj)  &   !
                    &                       +  hv(ji,jj,Kmm) * zv_frc (ji,jj)  )   ) * z1_hv
            END_2D
         ENDIF
!jth implicit bottom friction:
         IF ( ll_wd ) THEN ! revert to explicit for bit comparison tests in non wad runs
            DO_2D( 0, 0, 0, 0 )
               ua_e(ji,jj) =  ua_e(ji,jj) / ( 1._wp - rDt_e * zCdU_u(ji,jj) * hur_e(ji,jj) )
               va_e(ji,jj) =  va_e(ji,jj) / ( 1._wp - rDt_e * zCdU_v(ji,jj) * hvr_e(ji,jj) )
            END_2D
         ENDIF
       
         IF( .NOT.ln_linssh ) THEN !* Update ocean depth (variable volume case only)
            DO_2D( 0, 0, 0, 0 )
               hu_e (ji,jj) =    hu_0(ji,jj) + zsshu_a(ji,jj)
               hur_e(ji,jj) = ssumask(ji,jj) / (  hu_e(ji,jj) + 1._wp - ssumask(ji,jj)  )
               hv_e (ji,jj) =    hv_0(ji,jj) + zsshv_a(ji,jj)
               hvr_e(ji,jj) = ssvmask(ji,jj) / (  hv_e(ji,jj) + 1._wp - ssvmask(ji,jj)  )
            END_2D
         ENDIF
         !
         IF( .NOT.ln_linssh ) THEN   !* Update ocean depth (variable volume case only)
            CALL lbc_lnk( 'dynspg_ts', ua_e , 'U', -1._wp, va_e , 'V', -1._wp  &
                 &                   , hu_e , 'U',  1._wp, hv_e , 'V',  1._wp  &
                 &                   , hur_e, 'U',  1._wp, hvr_e, 'V',  1._wp  )
         ELSE
            CALL lbc_lnk( 'dynspg_ts', ua_e , 'U', -1._wp, va_e , 'V', -1._wp  )
         ENDIF
         !                                                 ! open boundaries
         IF( ln_bdy )   CALL bdy_dyn2d( jn, ua_e, va_e, un_e, vn_e, hur_e, hvr_e, ssha_e )
#if defined key_agrif                                                           
         IF( .NOT.Agrif_Root() )  CALL agrif_dyn_ts( jn )  ! Agrif
#endif
         !                                             !* Swap
         !                                             !  ----
         ubb_e  (:,:) = ub_e  (:,:)
         ub_e   (:,:) = un_e  (:,:)
         un_e   (:,:) = ua_e  (:,:)
         !
         vbb_e  (:,:) = vb_e  (:,:)
         vb_e   (:,:) = vn_e  (:,:)
         vn_e   (:,:) = va_e  (:,:)
         !
         sshbb_e(:,:) = sshb_e(:,:)
         sshb_e (:,:) = sshn_e(:,:)
         sshn_e (:,:) = ssha_e(:,:)

         !                                             !* Sum over whole bt loop
         !                                             !  ----------------------
         za1 = wgtbtp1(jn)                                    
         IF( ln_dynadv_vec .OR. ln_linssh ) THEN    ! Sum velocities
            puu_b  (:,:,Kaa) = puu_b  (:,:,Kaa) + za1 * ua_e  (:,:) 
            pvv_b  (:,:,Kaa) = pvv_b  (:,:,Kaa) + za1 * va_e  (:,:) 
         ELSE                                       ! Sum transports
            IF ( .NOT.ln_wd_dl ) THEN  
               puu_b  (:,:,Kaa) = puu_b  (:,:,Kaa) + za1 * ua_e  (:,:) * hu_e (:,:)
               pvv_b  (:,:,Kaa) = pvv_b  (:,:,Kaa) + za1 * va_e  (:,:) * hv_e (:,:)
            ELSE 
               puu_b  (:,:,Kaa) = puu_b  (:,:,Kaa) + za1 * ua_e  (:,:) * hu_e (:,:) * zuwdmask(:,:)
               pvv_b  (:,:,Kaa) = pvv_b  (:,:,Kaa) + za1 * va_e  (:,:) * hv_e (:,:) * zvwdmask(:,:)
            END IF 
         ENDIF
         !                                          ! Sum sea level
         pssh(:,:,Kaa) = pssh(:,:,Kaa) + za1 * ssha_e(:,:)

         !                                                 ! ==================== !
      END DO                                               !        end loop      !
      !                                                    ! ==================== !
      ! -----------------------------------------------------------------------------
      ! Phase 3. update the general trend with the barotropic trend
      ! -----------------------------------------------------------------------------
      !
      ! Set advection velocity correction:
      IF (ln_bt_fw) THEN
         IF( .NOT.( kt == nit000 .AND. l_1st_euler ) ) THEN
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zun_save = un_adv(ji,jj)
               zvn_save = vn_adv(ji,jj)
               !                          ! apply the previously computed correction 
               un_adv(ji,jj) = r1_2 * ( ub2_b(ji,jj) + zun_save - rn_atfp * un_bf(ji,jj) )
               vn_adv(ji,jj) = r1_2 * ( vb2_b(ji,jj) + zvn_save - rn_atfp * vn_bf(ji,jj) )
               !                          ! Update corrective fluxes for next time step
               un_bf(ji,jj)  = rn_atfp * un_bf(ji,jj) + ( zun_save - ub2_b(ji,jj) )
               vn_bf(ji,jj)  = rn_atfp * vn_bf(ji,jj) + ( zvn_save - vb2_b(ji,jj) )
               !                          ! Save integrated transport for next computation
               ub2_b(ji,jj) = zun_save
               vb2_b(ji,jj) = zvn_save
            END_2D
         ELSE
            un_bf(:,:) = 0._wp            ! corrective fluxes for next time step set to zero
            vn_bf(:,:) = 0._wp
            ub2_b(:,:) = un_adv(:,:)      ! Save integrated transport for next computation
            vb2_b(:,:) = vn_adv(:,:)
         END IF
      ENDIF


      !
      ! Update barotropic trend:
      IF( ln_dynadv_vec .OR. ln_linssh ) THEN
         DO jk=1,jpkm1
            puu(:,:,jk,Krhs) = puu(:,:,jk,Krhs) + ( puu_b(:,:,Kaa) - puu_b(:,:,Kbb) ) * r1_Dt_b
            pvv(:,:,jk,Krhs) = pvv(:,:,jk,Krhs) + ( pvv_b(:,:,Kaa) - pvv_b(:,:,Kbb) ) * r1_Dt_b
         END DO
      ELSE
         ! At this stage, pssh(:,:,:,Krhs) has been corrected: compute new depths at velocity points
#if defined key_qcoTest_FluxForm
         !                                ! 'key_qcoTest_FluxForm' : simple ssh average
         DO_2D( 1, 0, 1, 0 )
            zsshu_a(ji,jj) = r1_2 * ( pssh(ji,jj,Kaa) + pssh(ji+1,jj  ,Kaa) ) * ssumask(ji,jj)
            zsshv_a(ji,jj) = r1_2 * ( pssh(ji,jj,Kaa) + pssh(ji  ,jj+1,Kaa) ) * ssvmask(ji,jj)
         END_2D
#else
         DO_2D( 1, 0, 1, 0 )
            zsshu_a(ji,jj) = r1_2 * r1_e1e2u(ji,jj) * ( e1e2t(ji  ,jj) * pssh(ji  ,jj,Kaa)   &
               &                                      + e1e2t(ji+1,jj) * pssh(ji+1,jj,Kaa) ) * ssumask(ji,jj)
            zsshv_a(ji,jj) = r1_2 * r1_e1e2v(ji,jj) * ( e1e2t(ji,jj  ) * pssh(ji,jj  ,Kaa)   &
               &                                      + e1e2t(ji,jj+1) * pssh(ji,jj+1,Kaa) ) * ssvmask(ji,jj)
         END_2D
#endif   
         CALL lbc_lnk( 'dynspg_ts', zsshu_a, 'U', 1._wp, zsshv_a, 'V', 1._wp ) ! Boundary conditions
         !
         DO jk=1,jpkm1
            puu(:,:,jk,Krhs) = puu(:,:,jk,Krhs) + r1_hu(:,:,Kmm)   &
               &             * ( puu_b(:,:,Kaa) - puu_b(:,:,Kbb) * hu(:,:,Kbb) ) * r1_Dt_b
            pvv(:,:,jk,Krhs) = pvv(:,:,jk,Krhs) + r1_hv(:,:,Kmm)   &
               &             * ( pvv_b(:,:,Kaa) - pvv_b(:,:,Kbb) * hv(:,:,Kbb) ) * r1_Dt_b
         END DO
         ! Save barotropic velocities not transport:
         puu_b(:,:,Kaa) =  puu_b(:,:,Kaa) / ( hu_0(:,:) + zsshu_a(:,:) + 1._wp - ssumask(:,:) )
         pvv_b(:,:,Kaa) =  pvv_b(:,:,Kaa) / ( hv_0(:,:) + zsshv_a(:,:) + 1._wp - ssvmask(:,:) )
      ENDIF


      ! Correct velocities so that the barotropic velocity equals (un_adv, vn_adv) (in all cases)  
      DO jk = 1, jpkm1
         puu(:,:,jk,Kmm) = ( puu(:,:,jk,Kmm) + un_adv(:,:)*r1_hu(:,:,Kmm) - puu_b(:,:,Kmm) ) * umask(:,:,jk)
         pvv(:,:,jk,Kmm) = ( pvv(:,:,jk,Kmm) + vn_adv(:,:)*r1_hv(:,:,Kmm) - pvv_b(:,:,Kmm) ) * vmask(:,:,jk)
      END DO

      IF ( ln_wd_dl .and. ln_wd_dl_bc) THEN 
         DO jk = 1, jpkm1
            puu(:,:,jk,Kmm) = ( un_adv(:,:)*r1_hu(:,:,Kmm) &
                       & + zuwdav2(:,:)*(puu(:,:,jk,Kmm) - un_adv(:,:)*r1_hu(:,:,Kmm)) ) * umask(:,:,jk) 
            pvv(:,:,jk,Kmm) = ( vn_adv(:,:)*r1_hv(:,:,Kmm) & 
                       & + zvwdav2(:,:)*(pvv(:,:,jk,Kmm) - vn_adv(:,:)*r1_hv(:,:,Kmm)) ) * vmask(:,:,jk)  
         END DO
      END IF 

      
      CALL iom_put(  "ubar", un_adv(:,:)*r1_hu(:,:,Kmm) )    ! barotropic i-current
      CALL iom_put(  "vbar", vn_adv(:,:)*r1_hv(:,:,Kmm) )    ! barotropic i-current
      !
#if defined key_agrif
      ! Save time integrated fluxes during child grid integration
      ! (used to update coarse grid transports at next time step)
      !
      IF( .NOT.Agrif_Root() .AND. ln_bt_fw .AND. ln_agrif_2way ) THEN
         IF( Agrif_NbStepint() == 0 ) THEN
            ub2_i_b(:,:) = 0._wp
            vb2_i_b(:,:) = 0._wp
         END IF
         !
         za1 = 1._wp / REAL(Agrif_rhot(), wp)
         ub2_i_b(:,:) = ub2_i_b(:,:) + za1 * ub2_b(:,:)
         vb2_i_b(:,:) = vb2_i_b(:,:) + za1 * vb2_b(:,:)
      ENDIF
#endif      
      !                                   !* write time-spliting arrays in the restart
      IF( lrst_oce .AND.ln_bt_fw )   CALL ts_rst( kt, 'WRITE' )
      !
      IF( ln_wd_il )   DEALLOCATE( zcpx, zcpy )
      IF( ln_wd_dl )   DEALLOCATE( ztwdmask, zuwdmask, zvwdmask, zuwdav2, zvwdav2 )
      !
      CALL iom_put( "baro_u" , puu_b(:,:,Kmm) )  ! Barotropic  U Velocity
      CALL iom_put( "baro_v" , pvv_b(:,:,Kmm) )  ! Barotropic  V Velocity
      !
   END SUBROUTINE dyn_spg_ts


   SUBROUTINE ts_wgt( ll_av, ll_fw, jpit, zwgt1, zwgt2)
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE ts_wgt  ***
      !!
      !! ** Purpose : Set time-splitting weights for temporal averaging (or not)
      !!----------------------------------------------------------------------
      LOGICAL, INTENT(in) ::   ll_av      ! temporal averaging=.true.
      LOGICAL, INTENT(in) ::   ll_fw      ! forward time splitting =.true.
      INTEGER, INTENT(inout) :: jpit      ! cycle length    
      REAL(wp), DIMENSION(3*nn_e), INTENT(inout) ::   zwgt1, & ! Primary weights
                                                         zwgt2    ! Secondary weights
      
      INTEGER ::  jic, jn, ji                      ! temporary integers
      REAL(wp) :: za1, za2
      !!----------------------------------------------------------------------

      zwgt1(:) = 0._wp
      zwgt2(:) = 0._wp

      ! Set time index when averaged value is requested
      IF (ll_fw) THEN 
         jic = nn_e
      ELSE
         jic = 2 * nn_e
      ENDIF

      ! Set primary weights:
      IF (ll_av) THEN
           ! Define simple boxcar window for primary weights 
           ! (width = nn_e, centered around jic)     
         SELECT CASE ( nn_bt_flt )
              CASE( 0 )  ! No averaging
                 zwgt1(jic) = 1._wp
                 jpit = jic

              CASE( 1 )  ! Boxcar, width = nn_e
                 DO jn = 1, 3*nn_e
                    za1 = ABS(float(jn-jic))/float(nn_e) 
                    IF (za1 < 0.5_wp) THEN
                      zwgt1(jn) = 1._wp
                      jpit = jn
                    ENDIF
                 ENDDO

              CASE( 2 )  ! Boxcar, width = 2 * nn_e
                 DO jn = 1, 3*nn_e
                    za1 = ABS(float(jn-jic))/float(nn_e) 
                    IF (za1 < 1._wp) THEN
                      zwgt1(jn) = 1._wp
                      jpit = jn
                    ENDIF
                 ENDDO
              CASE DEFAULT   ;   CALL ctl_stop( 'unrecognised value for nn_bt_flt' )
         END SELECT

      ELSE ! No time averaging
         zwgt1(jic) = 1._wp
         jpit = jic
      ENDIF
    
      ! Set secondary weights
      DO jn = 1, jpit
        DO ji = jn, jpit
             zwgt2(jn) = zwgt2(jn) + zwgt1(ji)
        END DO
      END DO

      ! Normalize weigths:
      za1 = 1._wp / SUM(zwgt1(1:jpit))
      za2 = 1._wp / SUM(zwgt2(1:jpit))
      DO jn = 1, jpit
        zwgt1(jn) = zwgt1(jn) * za1
        zwgt2(jn) = zwgt2(jn) * za2
      END DO
      !
   END SUBROUTINE ts_wgt


   SUBROUTINE ts_rst( kt, cdrw )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE ts_rst  ***
      !!
      !! ** Purpose : Read or write time-splitting arrays in restart file
      !!----------------------------------------------------------------------
      INTEGER         , INTENT(in) ::   kt     ! ocean time-step
      CHARACTER(len=*), INTENT(in) ::   cdrw   ! "READ"/"WRITE" flag
      !!----------------------------------------------------------------------
      !
      IF( TRIM(cdrw) == 'READ' ) THEN        ! Read/initialise 
         !                                   ! ---------------
         IF( ln_rstart .AND. ln_bt_fw .AND. .NOT.l_1st_euler ) THEN    !* Read the restart file
            CALL iom_get( numror, jpdom_auto, 'ub2_b'  , ub2_b  (:,:), cd_type = 'U', psgn = -1._wp )   
            CALL iom_get( numror, jpdom_auto, 'vb2_b'  , vb2_b  (:,:), cd_type = 'V', psgn = -1._wp ) 
            CALL iom_get( numror, jpdom_auto, 'un_bf'  , un_bf  (:,:), cd_type = 'U', psgn = -1._wp )   
            CALL iom_get( numror, jpdom_auto, 'vn_bf'  , vn_bf  (:,:), cd_type = 'V', psgn = -1._wp ) 
            IF( .NOT.ln_bt_av ) THEN
               CALL iom_get( numror, jpdom_auto, 'sshbb_e'  , sshbb_e(:,:), cd_type = 'T', psgn =  1._wp )   
               CALL iom_get( numror, jpdom_auto, 'ubb_e'    ,   ubb_e(:,:), cd_type = 'U', psgn = -1._wp )   
               CALL iom_get( numror, jpdom_auto, 'vbb_e'    ,   vbb_e(:,:), cd_type = 'V', psgn = -1._wp )
               CALL iom_get( numror, jpdom_auto, 'sshb_e'   ,  sshb_e(:,:), cd_type = 'T', psgn =  1._wp ) 
               CALL iom_get( numror, jpdom_auto, 'ub_e'     ,    ub_e(:,:), cd_type = 'U', psgn = -1._wp )   
               CALL iom_get( numror, jpdom_auto, 'vb_e'     ,    vb_e(:,:), cd_type = 'V', psgn = -1._wp )
            ENDIF
#if defined key_agrif
            ! Read time integrated fluxes
            IF ( .NOT.Agrif_Root() ) THEN
               CALL iom_get( numror, jpdom_auto, 'ub2_i_b'  , ub2_i_b(:,:), cd_type = 'U', psgn = -1._wp )   
               CALL iom_get( numror, jpdom_auto, 'vb2_i_b'  , vb2_i_b(:,:), cd_type = 'V', psgn = -1._wp )
            ELSE
               ub2_i_b(:,:) = 0._wp   ;   vb2_i_b(:,:) = 0._wp   ! used in the 1st update of agrif
            ENDIF
#endif
         ELSE                                   !* Start from rest
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) '   ==>>>   start from rest: set barotropic values to 0'
            ub2_b  (:,:) = 0._wp   ;   vb2_b  (:,:) = 0._wp   ! used in the 1st interpol of agrif
            un_adv (:,:) = 0._wp   ;   vn_adv (:,:) = 0._wp   ! used in the 1st interpol of agrif
            un_bf  (:,:) = 0._wp   ;   vn_bf  (:,:) = 0._wp   ! used in the 1st update   of agrif
#if defined key_agrif
            ub2_i_b(:,:) = 0._wp   ;   vb2_i_b(:,:) = 0._wp   ! used in the 1st update of agrif
#endif
         ENDIF
         !
      ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN   ! Create restart file
         !                                   ! -------------------
         IF(lwp) WRITE(numout,*) '---- ts_rst ----'
         CALL iom_rstput( kt, nitrst, numrow, 'ub2_b'   , ub2_b  (:,:) )
         CALL iom_rstput( kt, nitrst, numrow, 'vb2_b'   , vb2_b  (:,:) )
         CALL iom_rstput( kt, nitrst, numrow, 'un_bf'   , un_bf  (:,:) )
         CALL iom_rstput( kt, nitrst, numrow, 'vn_bf'   , vn_bf  (:,:) )
         !
         IF (.NOT.ln_bt_av) THEN
            CALL iom_rstput( kt, nitrst, numrow, 'sshbb_e'  , sshbb_e(:,:) ) 
            CALL iom_rstput( kt, nitrst, numrow, 'ubb_e'    ,   ubb_e(:,:) )
            CALL iom_rstput( kt, nitrst, numrow, 'vbb_e'    ,   vbb_e(:,:) )
            CALL iom_rstput( kt, nitrst, numrow, 'sshb_e'   ,  sshb_e(:,:) )
            CALL iom_rstput( kt, nitrst, numrow, 'ub_e'     ,    ub_e(:,:) )
            CALL iom_rstput( kt, nitrst, numrow, 'vb_e'     ,    vb_e(:,:) )
         ENDIF
#if defined key_agrif
         ! Save time integrated fluxes
         IF ( .NOT.Agrif_Root() ) THEN
            CALL iom_rstput( kt, nitrst, numrow, 'ub2_i_b'  , ub2_i_b(:,:) )
            CALL iom_rstput( kt, nitrst, numrow, 'vb2_i_b'  , vb2_i_b(:,:) )
         ENDIF
#endif
      ENDIF
      !
   END SUBROUTINE ts_rst


   SUBROUTINE dyn_spg_ts_init