Forked from
Consortium Members / UKMO / GOSI / GOSI
28 commits behind the upstream repository.
-
Sebastien Masson authored61f9a109
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
vremap.F90 16.28 KiB
#define PPR_LIB /* USE PPR library */
MODULE vremap
!$AGRIF_DO_NOT_TREAT
!!======================================================================
!! *** MODULE vremap ***
!! Ocean physics: Vertical remapping routines
!!
!!======================================================================
!! History : 4.0 ! 2019-09 (Jérôme Chanut) Original code
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!!
!!----------------------------------------------------------------------
USE par_oce
#if defined PPR_LIB
USE ppr_1d ! D. Engwirda piecewise polynomial reconstruction library
#endif
IMPLICIT NONE
PRIVATE
PUBLIC reconstructandremap, remap_linear
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: vremap 11573 2019-09-19 09:18:03Z jchanut $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
#if ! defined PPR_LIB
SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE reconstructandremap ***
!!
!! ** Purpose : Brief description of the routine
!!
!! ** Method : description of the methodoloy used to achieve the
!! objectives of the routine. Be as clear as possible!
!!
!! ** Action : - first action (share memory array/varible modified
!! in this routine
!! - second action .....
!! - .....
!!
!! References : Author et al., Short_name_review, Year
!! Give references if exist otherwise suppress these lines
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: phin ! Input thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: phout ! Output thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Remapped data
!
INTEGER :: jk, jn, k1, kbox, ktop, ka, kbot
REAL(wp), PARAMETER :: dpthin = 1.D-3, dsmll = 1.0D-8
REAL(wp) :: q, q01, q02, q001, q002, q0
REAL(wp) :: tsum, qbot, rpsum, zbox, ztop, zthk, zbot, offset, qtop
REAL(wp) :: coeffremap(kjpk_in,3), zwork(kjpk_in,3), zwork2(kjpk_in+1,3)
REAL(wp) :: z_win(1:kjpk_in+1), z_wout(1:kjpk_out+1)
!!-----------------------------------------------------------------------
z_win(1)=0._wp ; z_wout(1)= 0._wp
DO jk = 1, kjpk_in
z_win(jk+1)=z_win(jk)+phin(jk)
END DO
DO jk = 1, kjpk_out
z_wout(jk+1)=z_wout(jk)+phout(jk)
END DO
DO jk = 2, kjpk_in
zwork(jk,1)=1._wp/(phin(jk-1)+phin(jk))
END DO
DO jk = 2, kjpk_in-1
q0 = 1._wp / (phin(jk-1)+phin(jk)+phin(jk+1))
zwork(jk,2) = phin(jk-1) + 2._wp*phin(jk) + phin(jk+1)
zwork(jk,3) = q0
END DO
DO jn = 1, kn_var
DO jk = 2,kjpk_in
zwork2(jk,1) = zwork(jk,1)*(ptin(jk,jn)-ptin(jk-1,jn))
END DO
coeffremap(:,1) = ptin(:,jn)
DO jk = 2, kjpk_in-1
q001 = phin(jk)*zwork2(jk+1,1)
q002 = phin(jk)*zwork2(jk,1)
IF (q001*q002 < 0._wp) then
q001 = 0._wp
q002 = 0._wp
ENDIF
q=zwork(jk,2)
q01=q*zwork2(jk+1,1)
q02=q*zwork2(jk,1)
IF (abs(q001) > abs(q02)) q001 = q02
IF (abs(q002) > abs(q01)) q002 = q01
q=(q001-q002)*zwork(jk,3)
q001=q001-q*phin(jk+1)
q002=q002+q*phin(jk-1)
coeffremap(jk,3)=coeffremap(jk,1)+q001
coeffremap(jk,2)=coeffremap(jk,1)-q002
zwork2(jk,1)=(2._wp*q001-q002)**2
zwork2(jk,2)=(2._wp*q002-q001)**2
ENDDO
DO jk = 1, kjpk_in
IF(jk.EQ.1 .OR. jk.EQ.kjpk_in .OR. phin(jk).LE.dpthin) THEN
coeffremap(jk,3) = coeffremap(jk,1)
coeffremap(jk,2) = coeffremap(jk,1)
zwork2(jk,1) = 0._wp
zwork2(jk,2) = 0._wp
ENDIF
END DO
DO jk = 2, kjpk_in
q002 = max(zwork2(jk-1,2),dsmll)
q001 = max(zwork2(jk,1) ,dsmll)
zwork2(jk,3) = (q001*coeffremap(jk-1,3)+q002*coeffremap(jk,2))/(q001+q002)
END DO
zwork2(1,3) = 2._wp*coeffremap(1,1)-zwork2(2,3)
zwork2(kjpk_in+1,3)=2._wp*coeffremap(kjpk_in,1)-zwork2(kjpk_in,3)
DO jk = 1, kjpk_in
q01=zwork2(jk+1,3)-coeffremap(jk,1)
q02=coeffremap(jk,1)-zwork2(jk,3)
q001=2._wp*q01
q002=2._wp*q02
IF (q01*q02<0._wp) then
q01=0._wp
q02=0._wp
ELSEIF (abs(q01)>abs(q002)) then
q01=q002
ELSEIF (abs(q02)>abs(q001)) then
q02=q001
ENDIF
coeffremap(jk,2)=coeffremap(jk,1)-q02
coeffremap(jk,3)=coeffremap(jk,1)+q01
ENDDO
zbot=0._wp
kbot=1
DO jk=1,kjpk_out
ztop=zbot !top is bottom of previous layer
ktop=kbot
IF (ztop.GE.z_win(ktop+1)) then
ktop=ktop+1
ENDIF
zbot=z_wout(jk+1)
zthk=zbot-ztop
IF(zthk.GT.dpthin .AND. ztop.LT.z_wout(kjpk_out+1)) THEN
kbot=ktop
DO while (z_win(kbot+1).lt.zbot.and.kbot.lt.kjpk_in)
kbot=kbot+1
ENDDO
zbox=zbot
DO k1= jk+1,kjpk_out
IF (z_wout(k1+1)-z_wout(k1).GT.dpthin) THEN
exit !thick layer
ELSE
zbox=z_wout(k1+1) !include thin adjacent layers
IF(zbox.EQ.z_wout(kjpk_out+1)) THEN
exit !at bottom
ENDIF
ENDIF
ENDDO
zthk=zbox-ztop
kbox=ktop
DO while (z_win(kbox+1).lt.zbox.and.kbox.lt.kjpk_in)
kbox=kbox+1
ENDDO
IF(ktop.EQ.kbox) THEN
IF(z_wout(jk).NE.z_win(kbox).OR.z_wout(jk+1).NE.z_win(kbox+1)) THEN
IF(phin(kbox).GT.dpthin) THEN
q001 = (zbox-z_win(kbox))/phin(kbox)
q002 = (ztop-z_win(kbox))/phin(kbox)
q01=q001**2+q002**2+q001*q002+1._wp-2._wp*(q001+q002)
q02=q01-1._wp+(q001+q002)
q0=1._wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
ptout(jk,jn)=q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3)
ELSE
ptout(jk,jn) = ptin(kbox,jn)
ENDIF
ELSE
IF(ktop.LE.jk .AND. kbox.GE.jk) THEN
ka = jk
ELSEIF (kbox-ktop.GE.3) THEN
ka = (kbox+ktop)/2
ELSEIF (phin(ktop).GE.phin(kbox)) THEN
ka = ktop
ELSE
ka = kbox
ENDIF !choose ka
offset=coeffremap(ka,1)
qtop = z_win(ktop+1)-ztop !partial layer thickness
IF(phin(ktop).GT.dpthin) THEN
q=(ztop-z_win(ktop))/phin(ktop)
q01=q*(q-1._wp)
q02=q01+q
q0=1._wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
tsum =((q0*coeffremap(ktop,1)+q01*coeffremap(ktop,2)+q02*coeffremap(ktop,3))-offset)*qtop
DO k1= ktop+1,kbox-1
tsum =tsum +(coeffremap(k1,1)-offset)*phin(k1)
ENDDO !k1
qbot = zbox-z_win(kbox) !partial layer thickness
IF(phin(kbox).GT.dpthin) THEN
q=qbot/phin(kbox)
q01=(q-1._wp)**2
q02=q01-1._wp+q
q0=1_wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
tsum = tsum +((q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3))-offset)*qbot
rpsum=1._wp / zthk
ptout(jk,jn)=offset+tsum*rpsum
ENDIF !single or multiple layers
ELSE
IF (jk==1) THEN
write(*,'(a7,i4,i4,3f12.5)')'problem = ',kjpk_in,kjpk_out,zthk,z_wout(jk+1),phout(1)
ENDIF
ptout(jk,jn) = ptout(jk-1,jn)
ENDIF !normal:thin layer
ENDDO !jk
END DO ! loop over variables
END SUBROUTINE reconstructandremap
#else
SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE reconstructandremap ***
!!
!! ** Purpose : Conservative remapping of a vertical column
!! from one set of layers to an other one.
!!
!! ** Method : Uses D. Engwirda Piecewise Polynomial Reconstruction library.
!! https://github.com/dengwirda/PPR
!!
!!
!! References : Engwirda, Darren & Kelley, Maxwell. (2015). A WENO-type
!! slope-limiter for a family of piecewise polynomial methods.
!! https://arxiv.org/abs/1606.08188
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: phin ! Input thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: phout ! Output thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Remapped data
!
INTEGER, PARAMETER :: ndof = 1
INTEGER :: jk, jn
REAL(dp) :: zwin(kjpk_in+1) , ztin(ndof, kn_var, kjpk_in) ! rmap1d uses dp
REAL(dp) :: zwout(kjpk_out+1), ztout(ndof, kn_var, kjpk_out) ! rmap1d uses dp
TYPE(rmap_work) :: work
TYPE(rmap_opts) :: opts
TYPE(rcon_ends) :: bc_l(kn_var)
TYPE(rcon_ends) :: bc_r(kn_var)
!!--------------------------------------------------------------------
! Set interfaces and input data:
zwin(1) = 0._wp
DO jk = 2, kjpk_in + 1
zwin(jk) = zwin(jk-1) + phin(jk-1)
END DO
DO jn = 1, kn_var
DO jk = 1, kjpk_in
ztin(ndof, jn, jk) = ptin(jk, jn)
END DO
END DO
zwout(1) = 0._wp
DO jk = 2, kjpk_out + 1
zwout(jk) = zwout(jk-1) + phout(jk-1)
END DO
! specify methods
! opts%edge_meth = p1e_method ! 1st-order edge interp.
! opts%cell_meth = pcm_method
! opts%cell_meth = plm_method ! PLM method in cells
opts%edge_meth = p3e_method ! 3rd-order edge interp.
opts%cell_meth = ppm_method ! PPM method in cells
! opts%edge_meth = p5e_method ! 5th-order edge interp.
! opts%cell_meth = pqm_method ! PQM method in cells
! limiter
! opts%cell_lims = null_limit ! no lim.
! opts%cell_lims = weno_limit
opts%cell_lims = mono_limit ! monotone limiter
! set boundary conditions
bc_l%bcopt = bcon_loose ! "loose" = extrapolate
bc_r%bcopt = bcon_loose
! bc_l%bcopt = bcon_slope
! bc_r%bcopt = bcon_slope
! init. method workspace
CALL work%init(kjpk_in+1, kn_var, opts)
! remap
CALL rmap1d(kjpk_in+1, kjpk_out+1, kn_var, ndof, &
& zwin, zwout, ztin, ztout, &
& bc_l, bc_r, work, opts)
! clear method workspace
CALL work%free()
DO jn = 1, kn_var
DO jk = 1, kjpk_out
ptout(jk, jn) = ztout(1, jn, jk)
END DO
END DO
END SUBROUTINE reconstructandremap
#endif
SUBROUTINE remap_linear(ptin, pzin, ptout, pzout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE remap_linear ***
!!
!! ** Purpose : Linear interpolation based on input/ouputs depths
!!
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: pzin ! Input depths
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: pzout ! Output depths
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Interpolated data
!
INTEGER :: jkin, jkout, jn
!!--------------------------------------------------------------------
!
DO jkout = 1, kjpk_out ! Loop over destination grid
!
IF ( pzout(jkout) <= pzin( 1 ) ) THEN ! Surface extrapolation
DO jn = 1, kn_var
! linear
! ptout(jkout,jn) = ptin(1 ,jn) + &
! & (pzout(jkout) - pzin(1)) / (pzin(2) - pzin(1)) &
! & * (ptin(2,jn) - ptin(1,jn))
ptout(jkout,jn) = ptin(1,jn)
END DO
ELSEIF ( pzout(jkout) >= pzin(kjpk_in) ) THEN ! Bottom extrapolation
DO jn = 1, kn_var
! linear
! ptout(jkout,jn) = ptin(kjpk_in ,jn) + &
! & (pzout(jkout) - pzin(kjpk_in)) / (pzin(kjpk_in) - pzin(kjpk_in-1)) &
! & * (ptin(kjpk_in,jn) - ptin(kjpk_in-1,jn))
ptout(jkout,jn) = ptin(kjpk_in ,jn)
END DO
ELSEIF ( ( pzout(jkout) > pzin(1) ).AND.( pzout(jkout) < pzin(kjpk_in) )) THEN
DO jkin = 1, kjpk_in - 1 ! Loop over source grid
IF ( pzout(jkout) < pzin(jkin+1) ) THEN
DO jn = 1, kn_var
ptout(jkout,jn) = ptin(jkin,jn) + &
& (pzout(jkout) - pzin(jkin)) / (pzin(jkin+1) - pzin(jkin)) &
& * (ptin(jkin+1,jn) - ptin(jkin,jn))
END DO
EXIT
ENDIF
END DO
ENDIF
!
END DO
END SUBROUTINE remap_linear
!!======================================================================
!$AGRIF_END_DO_NOT_TREAT
END MODULE vremap