Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#define PPR_LIB /* USE PPR library */
MODULE vremap
!$AGRIF_DO_NOT_TREAT
!!======================================================================
!! *** MODULE vremap ***
!! Ocean physics: Vertical remapping routines
!!
!!======================================================================
!! History : 4.0 ! 2019-09 (Jérôme Chanut) Original code
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!!
!!----------------------------------------------------------------------
USE par_oce
#if defined PPR_LIB
USE ppr_1d ! D. Engwirda piecewise polynomial reconstruction library
#endif
IMPLICIT NONE
PRIVATE
PUBLIC reconstructandremap, remap_linear
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: vremap 11573 2019-09-19 09:18:03Z jchanut $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
#if ! defined PPR_LIB
SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE reconstructandremap ***
!!
!! ** Purpose : Brief description of the routine
!!
!! ** Method : description of the methodoloy used to achieve the
!! objectives of the routine. Be as clear as possible!
!!
!! ** Action : - first action (share memory array/varible modified
!! in this routine
!! - second action .....
!! - .....
!!
!! References : Author et al., Short_name_review, Year
!! Give references if exist otherwise suppress these lines
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: phin ! Input thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: phout ! Output thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Remapped data
!
INTEGER :: jk, jn, k1, kbox, ktop, ka, kbot
REAL(wp), PARAMETER :: dpthin = 1.D-3, dsmll = 1.0D-8
REAL(wp) :: q, q01, q02, q001, q002, q0
REAL(wp) :: tsum, qbot, rpsum, zbox, ztop, zthk, zbot, offset, qtop
REAL(wp) :: coeffremap(kjpk_in,3), zwork(kjpk_in,3), zwork2(kjpk_in+1,3)
REAL(wp) :: z_win(1:kjpk_in+1), z_wout(1:kjpk_out+1)
!!-----------------------------------------------------------------------
z_win(1)=0._wp ; z_wout(1)= 0._wp
DO jk = 1, kjpk_in
z_win(jk+1)=z_win(jk)+phin(jk)
END DO
DO jk = 1, kjpk_out
z_wout(jk+1)=z_wout(jk)+phout(jk)
END DO
DO jk = 2, kjpk_in
zwork(jk,1)=1._wp/(phin(jk-1)+phin(jk))
END DO
DO jk = 2, kjpk_in-1
q0 = 1._wp / (phin(jk-1)+phin(jk)+phin(jk+1))
zwork(jk,2) = phin(jk-1) + 2._wp*phin(jk) + phin(jk+1)
zwork(jk,3) = q0
END DO
DO jn = 1, kn_var
DO jk = 2,kjpk_in
zwork2(jk,1) = zwork(jk,1)*(ptin(jk,jn)-ptin(jk-1,jn))
END DO
coeffremap(:,1) = ptin(:,jn)
DO jk = 2, kjpk_in-1
q001 = phin(jk)*zwork2(jk+1,1)
q002 = phin(jk)*zwork2(jk,1)
IF (q001*q002 < 0._wp) then
q001 = 0._wp
q002 = 0._wp
ENDIF
q=zwork(jk,2)
q01=q*zwork2(jk+1,1)
q02=q*zwork2(jk,1)
IF (abs(q001) > abs(q02)) q001 = q02
IF (abs(q002) > abs(q01)) q002 = q01
q=(q001-q002)*zwork(jk,3)
q001=q001-q*phin(jk+1)
q002=q002+q*phin(jk-1)
coeffremap(jk,3)=coeffremap(jk,1)+q001
coeffremap(jk,2)=coeffremap(jk,1)-q002
zwork2(jk,1)=(2._wp*q001-q002)**2
zwork2(jk,2)=(2._wp*q002-q001)**2
ENDDO
DO jk = 1, kjpk_in
IF(jk.EQ.1 .OR. jk.EQ.kjpk_in .OR. phin(jk).LE.dpthin) THEN
coeffremap(jk,3) = coeffremap(jk,1)
coeffremap(jk,2) = coeffremap(jk,1)
zwork2(jk,1) = 0._wp
zwork2(jk,2) = 0._wp
ENDIF
END DO
DO jk = 2, kjpk_in
q002 = max(zwork2(jk-1,2),dsmll)
q001 = max(zwork2(jk,1) ,dsmll)
zwork2(jk,3) = (q001*coeffremap(jk-1,3)+q002*coeffremap(jk,2))/(q001+q002)
END DO
zwork2(1,3) = 2._wp*coeffremap(1,1)-zwork2(2,3)
zwork2(kjpk_in+1,3)=2._wp*coeffremap(kjpk_in,1)-zwork2(kjpk_in,3)
DO jk = 1, kjpk_in
q01=zwork2(jk+1,3)-coeffremap(jk,1)
q02=coeffremap(jk,1)-zwork2(jk,3)
q001=2._wp*q01
q002=2._wp*q02
IF (q01*q02<0._wp) then
q01=0._wp
q02=0._wp
ELSEIF (abs(q01)>abs(q002)) then
q01=q002
ELSEIF (abs(q02)>abs(q001)) then
q02=q001
ENDIF
coeffremap(jk,2)=coeffremap(jk,1)-q02
coeffremap(jk,3)=coeffremap(jk,1)+q01
ENDDO
zbot=0._wp
kbot=1
DO jk=1,kjpk_out
ztop=zbot !top is bottom of previous layer
ktop=kbot
IF (ztop.GE.z_win(ktop+1)) then
ktop=ktop+1
ENDIF
zbot=z_wout(jk+1)
zthk=zbot-ztop
IF(zthk.GT.dpthin .AND. ztop.LT.z_wout(kjpk_out+1)) THEN
kbot=ktop
DO while (z_win(kbot+1).lt.zbot.and.kbot.lt.kjpk_in)
kbot=kbot+1
ENDDO
zbox=zbot
DO k1= jk+1,kjpk_out
IF (z_wout(k1+1)-z_wout(k1).GT.dpthin) THEN
exit !thick layer
ELSE
zbox=z_wout(k1+1) !include thin adjacent layers
IF(zbox.EQ.z_wout(kjpk_out+1)) THEN
exit !at bottom
ENDIF
ENDIF
ENDDO
zthk=zbox-ztop
kbox=ktop
DO while (z_win(kbox+1).lt.zbox.and.kbox.lt.kjpk_in)
kbox=kbox+1
ENDDO
IF(ktop.EQ.kbox) THEN
IF(z_wout(jk).NE.z_win(kbox).OR.z_wout(jk+1).NE.z_win(kbox+1)) THEN
IF(phin(kbox).GT.dpthin) THEN
q001 = (zbox-z_win(kbox))/phin(kbox)
q002 = (ztop-z_win(kbox))/phin(kbox)
q01=q001**2+q002**2+q001*q002+1._wp-2._wp*(q001+q002)
q02=q01-1._wp+(q001+q002)
q0=1._wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
ptout(jk,jn)=q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3)
ELSE
ptout(jk,jn) = ptin(kbox,jn)
ENDIF
ELSE
IF(ktop.LE.jk .AND. kbox.GE.jk) THEN
ka = jk
ELSEIF (kbox-ktop.GE.3) THEN
ka = (kbox+ktop)/2
ELSEIF (phin(ktop).GE.phin(kbox)) THEN
ka = ktop
ELSE
ka = kbox
ENDIF !choose ka
offset=coeffremap(ka,1)
qtop = z_win(ktop+1)-ztop !partial layer thickness
IF(phin(ktop).GT.dpthin) THEN
q=(ztop-z_win(ktop))/phin(ktop)
q01=q*(q-1._wp)
q02=q01+q
q0=1._wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
tsum =((q0*coeffremap(ktop,1)+q01*coeffremap(ktop,2)+q02*coeffremap(ktop,3))-offset)*qtop
DO k1= ktop+1,kbox-1
tsum =tsum +(coeffremap(k1,1)-offset)*phin(k1)
ENDDO !k1
qbot = zbox-z_win(kbox) !partial layer thickness
IF(phin(kbox).GT.dpthin) THEN
q=qbot/phin(kbox)
q01=(q-1._wp)**2
q02=q01-1._wp+q
q0=1_wp-q01-q02
ELSE
q0 = 1._wp
q01 = 0._wp
q02 = 0._wp
ENDIF
tsum = tsum +((q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3))-offset)*qbot
rpsum=1._wp / zthk
ptout(jk,jn)=offset+tsum*rpsum
ENDIF !single or multiple layers
ELSE
IF (jk==1) THEN
write(*,'(a7,i4,i4,3f12.5)')'problem = ',kjpk_in,kjpk_out,zthk,z_wout(jk+1),phout(1)
ENDIF
ptout(jk,jn) = ptout(jk-1,jn)
ENDIF !normal:thin layer
ENDDO !jk
END DO ! loop over variables
END SUBROUTINE reconstructandremap
#else
SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE reconstructandremap ***
!!
!! ** Purpose : Conservative remapping of a vertical column
!! from one set of layers to an other one.
!!
!! ** Method : Uses D. Engwirda Piecewise Polynomial Reconstruction library.
!! https://github.com/dengwirda/PPR
!!
!!
!! References : Engwirda, Darren & Kelley, Maxwell. (2015). A WENO-type
!! slope-limiter for a family of piecewise polynomial methods.
!! https://arxiv.org/abs/1606.08188
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: phin ! Input thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: phout ! Output thicknesses
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Remapped data
!
INTEGER, PARAMETER :: ndof = 1
INTEGER :: jk, jn
REAL(dp) :: zwin(kjpk_in+1) , ztin(ndof, kn_var, kjpk_in) ! rmap1d uses dp
REAL(dp) :: zwout(kjpk_out+1), ztout(ndof, kn_var, kjpk_out) ! rmap1d uses dp
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
TYPE(rmap_work) :: work
TYPE(rmap_opts) :: opts
TYPE(rcon_ends) :: bc_l(kn_var)
TYPE(rcon_ends) :: bc_r(kn_var)
!!--------------------------------------------------------------------
! Set interfaces and input data:
zwin(1) = 0._wp
DO jk = 2, kjpk_in + 1
zwin(jk) = zwin(jk-1) + phin(jk-1)
END DO
DO jn = 1, kn_var
DO jk = 1, kjpk_in
ztin(ndof, jn, jk) = ptin(jk, jn)
END DO
END DO
zwout(1) = 0._wp
DO jk = 2, kjpk_out + 1
zwout(jk) = zwout(jk-1) + phout(jk-1)
END DO
! specify methods
! opts%edge_meth = p1e_method ! 1st-order edge interp.
! opts%cell_meth = pcm_method
! opts%cell_meth = plm_method ! PLM method in cells
opts%edge_meth = p3e_method ! 3rd-order edge interp.
opts%cell_meth = ppm_method ! PPM method in cells
! opts%edge_meth = p5e_method ! 5th-order edge interp.
! opts%cell_meth = pqm_method ! PQM method in cells
! limiter
! opts%cell_lims = null_limit ! no lim.
! opts%cell_lims = weno_limit
opts%cell_lims = mono_limit ! monotone limiter
! set boundary conditions
bc_l%bcopt = bcon_loose ! "loose" = extrapolate
bc_r%bcopt = bcon_loose
! bc_l%bcopt = bcon_slope
! bc_r%bcopt = bcon_slope
! init. method workspace
CALL work%init(kjpk_in+1, kn_var, opts)
! remap
CALL rmap1d(kjpk_in+1, kjpk_out+1, kn_var, ndof, &
& zwin, zwout, ztin, ztout, &
& bc_l, bc_r, work, opts)
! clear method workspace
CALL work%free()
DO jn = 1, kn_var
DO jk = 1, kjpk_out
ptout(jk, jn) = ztout(1, jn, jk)
END DO
END DO
END SUBROUTINE reconstructandremap
#endif
SUBROUTINE remap_linear(ptin, pzin, ptout, pzout, kjpk_in, kjpk_out, kn_var)
!!----------------------------------------------------------------------
!! *** ROUTINE remap_linear ***
!!
!! ** Purpose : Linear interpolation based on input/ouputs depths
!!
!!-----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpk_in ! Number of input levels
INTEGER , INTENT(in ) :: kjpk_out ! Number of output levels
INTEGER , INTENT(in ) :: kn_var ! Number of variables
REAL(wp), INTENT(in ), DIMENSION(kjpk_in) :: pzin ! Input depths
REAL(wp), INTENT(in ), DIMENSION(kjpk_out) :: pzout ! Output depths
REAL(wp), INTENT(in ), DIMENSION(kjpk_in , kn_var) :: ptin ! Input data
REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) :: ptout ! Interpolated data
!
INTEGER :: jkin, jkout, jn
!!--------------------------------------------------------------------
!
DO jkout = 1, kjpk_out ! Loop over destination grid
!
IF ( pzout(jkout) <= pzin( 1 ) ) THEN ! Surface extrapolation
DO jn = 1, kn_var
! linear
! ptout(jkout,jn) = ptin(1 ,jn) + &
! & (pzout(jkout) - pzin(1)) / (pzin(2) - pzin(1)) &
! & * (ptin(2,jn) - ptin(1,jn))
ptout(jkout,jn) = ptin(1,jn)
END DO
ELSEIF ( pzout(jkout) >= pzin(kjpk_in) ) THEN ! Bottom extrapolation
DO jn = 1, kn_var
! linear
! ptout(jkout,jn) = ptin(kjpk_in ,jn) + &
! & (pzout(jkout) - pzin(kjpk_in)) / (pzin(kjpk_in) - pzin(kjpk_in-1)) &
! & * (ptin(kjpk_in,jn) - ptin(kjpk_in-1,jn))
ptout(jkout,jn) = ptin(kjpk_in ,jn)
END DO
ELSEIF ( ( pzout(jkout) > pzin(1) ).AND.( pzout(jkout) < pzin(kjpk_in) )) THEN
DO jkin = 1, kjpk_in - 1 ! Loop over source grid
IF ( pzout(jkout) < pzin(jkin+1) ) THEN
DO jn = 1, kn_var
ptout(jkout,jn) = ptin(jkin,jn) + &
& (pzout(jkout) - pzin(jkin)) / (pzin(jkin+1) - pzin(jkin)) &
& * (ptin(jkin+1,jn) - ptin(jkin,jn))
END DO
EXIT
ENDIF
END DO
ENDIF
!
END DO
END SUBROUTINE remap_linear
!!======================================================================
!$AGRIF_END_DO_NOT_TREAT
END MODULE vremap