Skip to content
Snippets Groups Projects
icevar.F90 64.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE icevar
   !!======================================================================
   !!                       ***  MODULE icevar ***
   !!   sea-ice:  series of functions to transform or compute ice variables
   !!======================================================================
   !! History :   -   !  2006-01  (M. Vancoppenolle) Original code
   !!            4.0  !  2018     (many people)      SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!
   !!                 There are three sets of variables
   !!                 VGLO : global variables of the model
   !!                        - v_i (jpi,jpj,jpl)
   !!                        - v_s (jpi,jpj,jpl)
   !!                        - a_i (jpi,jpj,jpl)
   !!                        - t_s (jpi,jpj,jpl)
   !!                        - e_i (jpi,jpj,nlay_i,jpl)
   !!                        - e_s (jpi,jpj,nlay_s,jpl)
   !!                        - sv_i(jpi,jpj,jpl)
   !!                        - oa_i(jpi,jpj,jpl)
   !!                 VEQV : equivalent variables sometimes used in the model
   !!                        - h_i(jpi,jpj,jpl)
   !!                        - h_s(jpi,jpj,jpl)
   !!                        - t_i(jpi,jpj,nlay_i,jpl)
   !!                        ...
   !!                 VAGG : aggregate variables, averaged/summed over all
   !!                        thickness categories
   !!                        - vt_i(jpi,jpj)
   !!                        - vt_s(jpi,jpj)
   !!                        - at_i(jpi,jpj)
   !!                        - st_i(jpi,jpj)
   !!                        - et_s(jpi,jpj)  total snow heat content
   !!                        - et_i(jpi,jpj)  total ice thermal content
   !!                        - sm_i(jpi,jpj)  mean ice salinity
   !!                        - tm_i(jpi,jpj)  mean ice temperature
   !!                        - tm_s(jpi,jpj)  mean snw temperature
   !!----------------------------------------------------------------------
   !!   ice_var_agg       : integrate variables over layers and categories
   !!   ice_var_glo2eqv   : transform from VGLO to VEQV
   !!   ice_var_eqv2glo   : transform from VEQV to VGLO
   !!   ice_var_salprof   : salinity profile in the ice
   !!   ice_var_salprof1d : salinity profile in the ice 1D
   !!   ice_var_zapsmall  : remove very small area and volume
   !!   ice_var_zapneg    : remove negative ice fields
   !!   ice_var_roundoff  : remove negative values arising from roundoff erros
   !!   ice_var_bv        : brine volume
   !!   ice_var_enthalpy  : compute ice and snow enthalpies from temperature
   !!   ice_var_sshdyn    : compute equivalent ssh in lead
   !!   ice_var_itd       : convert N-cat to M-cat
   !!   ice_var_snwfra    : fraction of ice covered by snow
   !!   ice_var_snwblow   : distribute snow fall between ice and ocean
   !!----------------------------------------------------------------------
   USE dom_oce        ! ocean space and time domain
   USE phycst         ! physical constants (ocean directory)
   USE sbc_oce , ONLY : sss_m, ln_ice_embd, nn_fsbc
   USE ice            ! sea-ice: variables
   USE ice1D          ! sea-ice: thermodynamics variables
   !
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_var_agg
   PUBLIC   ice_var_glo2eqv
   PUBLIC   ice_var_eqv2glo
   PUBLIC   ice_var_salprof
   PUBLIC   ice_var_salprof1d
   PUBLIC   ice_var_zapsmall
   PUBLIC   ice_var_zapneg
   PUBLIC   ice_var_roundoff
   PUBLIC   ice_var_bv
   PUBLIC   ice_var_enthalpy
   PUBLIC   ice_var_sshdyn
   PUBLIC   ice_var_itd
   PUBLIC   ice_var_snwfra
   PUBLIC   ice_var_snwblow

   INTERFACE ice_var_itd
      MODULE PROCEDURE ice_var_itd_1c1c, ice_var_itd_Nc1c, ice_var_itd_1cMc, ice_var_itd_NcMc
   END INTERFACE

   !! * Substitutions
#  include "do_loop_substitute.h90"

   INTERFACE ice_var_snwfra
      MODULE PROCEDURE ice_var_snwfra_1d, ice_var_snwfra_2d, ice_var_snwfra_3d
   END INTERFACE

   INTERFACE ice_var_snwblow
      MODULE PROCEDURE ice_var_snwblow_1d, ice_var_snwblow_2d
   END INTERFACE

   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icevar.F90 15385 2021-10-15 13:52:48Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_var_agg( kn )
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_agg  ***
      !!
      !! ** Purpose :   aggregates ice-thickness-category variables to
      !!              all-ice variables, i.e. it turns VGLO into VAGG
      !!-------------------------------------------------------------------
      INTEGER, INTENT( in ) ::   kn     ! =1 state variables only
      !                                 ! >1 state variables + others
      !
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp) ::   z1_vt_i, z1_vt_s
      REAL(wp), DIMENSION(A2D(0)) ::   z1_at_i
Guillaume Samson's avatar
Guillaume Samson committed
      !!-------------------------------------------------------------------
      !
      ! full    arrays: vt_i, vt_s, at_i, vt_ip, vt_il, at_ip
      ! reduced arrays: the rest
Guillaume Samson's avatar
Guillaume Samson committed
      !
      ! --- integrated values
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         vt_i(ji,jj)  = SUM( v_i (ji,jj,:) )
         vt_s(ji,jj)  = SUM( v_s (ji,jj,:) )
         at_i(ji,jj)  = SUM( a_i (ji,jj,:) )
         !
         at_ip(ji,jj) = SUM( a_ip(ji,jj,:) ) ! melt ponds
         vt_ip(ji,jj) = SUM( v_ip(ji,jj,:) )
         vt_il(ji,jj) = SUM( v_il(ji,jj,:) )
         !
         ato_i(ji,jj) = 1._wp - at_i(ji,jj)  ! open water fraction
      DO_2D( 0, 0, 0, 0 )
         st_i(ji,jj) =       SUM( sv_i(ji,jj,:)     )
         et_s(ji,jj)  = SUM( SUM( e_s (ji,jj,:,:), dim=2 ) )
         et_i(ji,jj)  = SUM( SUM( e_i (ji,jj,:,:), dim=2 ) )
Clement Rousset's avatar
Clement Rousset committed
         !
         !!GS: tm_su always needed by ABL over sea-ice
         IF( at_i(ji,jj) <= epsi20 ) THEN
            z1_at_i(ji,jj) = 0._wp
            tm_su  (ji,jj) = rt0
            z1_at_i(ji,jj) = 1._wp / at_i(ji,jj)
            tm_su  (ji,jj) = SUM( t_su(ji,jj,:) * a_i(ji,jj,:) ) * z1_at_i(ji,jj)
Guillaume Samson's avatar
Guillaume Samson committed
      !
      ! The following fields are calculated for diagnostics and outputs only
      ! ==> Do not use them for other purposes
      IF( kn > 1 ) THEN
         !
         DO_2D( 0, 0, 0, 0 )
            IF( vt_i(ji,jj) > epsi20 ) THEN   ;   z1_vt_i = 1._wp / vt_i(ji,jj)
            ELSE                              ;   z1_vt_i = 0._wp
            ENDIF
            IF( vt_s(ji,jj) > epsi20 ) THEN   ;   z1_vt_s = 1._wp / vt_s(ji,jj)
            ELSE                              ;   z1_vt_s = 0._wp
            ENDIF

            ! mean ice/snow thickness
            hm_i(ji,jj) = vt_i(ji,jj) * z1_at_i(ji,jj)
            hm_s(ji,jj) = vt_s(ji,jj) * z1_at_i(ji,jj)
            !
            ! mean temperature (K), salinity and age
            tm_si(ji,jj) = SUM( t_si(ji,jj,:) * a_i(ji,jj,:)  ) * z1_at_i(ji,jj)
            om_i (ji,jj) = SUM( oa_i(ji,jj,:)                 ) * z1_at_i(ji,jj)
            sm_i (ji,jj) =      st_i(ji,jj)                     * z1_vt_i
            !
            tm_i(ji,jj) = 0._wp
            tm_s(ji,jj) = 0._wp
            DO jl = 1, jpl
               DO jk = 1, nlay_i
                  tm_i(ji,jj) = tm_i(ji,jj) + r1_nlay_i * t_i (ji,jj,jk,jl) * v_i(ji,jj,jl) * z1_vt_i
               END DO
               DO jk = 1, nlay_s
                  tm_s(ji,jj) = tm_s(ji,jj) + r1_nlay_s * t_s (ji,jj,jk,jl) * v_s(ji,jj,jl) * z1_vt_s
Guillaume Samson's avatar
Guillaume Samson committed
            END DO
         ! put rt0 where there is no ice
         WHERE( at_i(A2D(0)) <= epsi20 )
Guillaume Samson's avatar
Guillaume Samson committed
            tm_si(:,:) = rt0
            tm_i (:,:) = rt0
            tm_s (:,:) = rt0
         END WHERE
         !
         ! mean melt pond depth
         WHERE( at_ip(A2D(0)) > epsi20 )
            hm_ip(:,:) = vt_ip(A2D(0)) / at_ip(A2D(0))
            hm_il(:,:) = vt_il(A2D(0)) / at_ip(A2D(0))
         ELSEWHERE
            hm_ip(:,:) = 0._wp
            hm_il(:,:) = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
         END WHERE
         !
      ENDIF
      !
   END SUBROUTINE ice_var_agg


   SUBROUTINE ice_var_glo2eqv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_glo2eqv ***
      !!
      !! ** Purpose :   computes equivalent variables as function of
      !!              global variables, i.e. it turns VGLO into VEQV
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp) ::   ze_i             ! local scalars
      REAL(wp) ::   ze_s, ztmelts, zbbb, zccc       !   -      -
      REAL(wp) ::   zhmax, z1_zhmax                 !   -      -
      REAL(wp) ::   zlay_i, zlay_s                  !   -      -
      REAL(wp), PARAMETER ::   zhl_max =  0.015_wp  ! pond lid thickness above which the ponds disappear from the albedo calculation
      REAL(wp), PARAMETER ::   zhl_min =  0.005_wp  ! pond lid thickness below which the full pond area is used in the albedo calculation
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   z1_a_i, z1_v_i, z1_a_ip
      REAL(wp), DIMENSION(A2D(0),jpl)  ::   za_s_fra
Guillaume Samson's avatar
Guillaume Samson committed
      !!-------------------------------------------------------------------

!!gm Question 2:  It is possible to define existence of sea-ice in a common way between
!!                ice area and ice volume ?
!!                the idea is to be able to define one for all at the begining of this routine
!!                a criteria for icy area (i.e. a_i > epsi20 and v_i > epsi20 )

      !---------------------------------------------------------------
      ! Ice thickness, snow thickness, ice salinity, ice age and ponds
      !---------------------------------------------------------------
      !                                            !--- inverse of the ice area
      WHERE( a_i(:,:,:) > epsi20 )   ;   z1_a_i(:,:,:) = 1._wp / a_i(:,:,:)
      ELSEWHERE                      ;   z1_a_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( v_i(:,:,:) > epsi20 )   ;   z1_v_i(:,:,:) = 1._wp / v_i(:,:,:)
      ELSEWHERE                      ;   z1_v_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( a_ip(:,:,:) > epsi20 )  ;   z1_a_ip(:,:,:) = 1._wp / a_ip(:,:,:)
      ELSEWHERE                      ;   z1_a_ip(:,:,:) = 0._wp
      END WHERE
      !                                           !--- ice thickness
      h_i(:,:,:) = v_i (:,:,:) * z1_a_i(:,:,:)

      zhmax    =          hi_max(jpl)
      z1_zhmax =  1._wp / hi_max(jpl)
      WHERE( h_i(:,:,jpl) > zhmax )   ! bound h_i by hi_max (i.e. 99 m) with associated update of ice area
         h_i   (:,:,jpl) = zhmax
         a_i   (:,:,jpl) = v_i(:,:,jpl) * z1_zhmax
         z1_a_i(:,:,jpl) = zhmax * z1_v_i(:,:,jpl)
      END WHERE
      !                                           !--- snow thickness
      h_s(:,:,:) = v_s (:,:,:) * z1_a_i(:,:,:)
      !                                           !--- ice age
      o_i(:,:,:) = oa_i(:,:,:) * z1_a_i(:,:,:)
      !                                           !--- pond and lid thickness
      h_ip(:,:,:) = v_ip(:,:,:) * z1_a_ip(:,:,:)
      h_il(:,:,:) = v_il(:,:,:) * z1_a_ip(:,:,:)
      !                                           !--- melt pond effective area (used for albedo)
      a_ip_frac(:,:,:) = a_ip(A2D(0),:) * z1_a_i(A2D(0),:)
      WHERE    ( h_il(A2D(0),:) <= zhl_min )  ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:)       ! lid is very thin.  Expose all the pond
      ELSEWHERE( h_il(A2D(0),:) >= zhl_max )  ;   a_ip_eff(:,:,:) = 0._wp                  ! lid is very thick. Cover all the pond up with ice and snow
      ELSEWHERE                               ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:) * &   ! lid is in between. Expose part of the pond
         &                                                       ( zhl_max - h_il(A2D(0),:) ) / ( zhl_max - zhl_min )
Guillaume Samson's avatar
Guillaume Samson committed
      END WHERE
      !
      CALL ice_var_snwfra( h_s(A2D(0),:), za_s_fra(:,:,:) )           ! calculate ice fraction covered by snow
      a_ip_eff(:,:,:) = MIN( a_ip_eff(:,:,:), 1._wp - za_s_fra(:,:,:) )   ! make sure (a_ip_eff + a_s_fra) <= 1
Guillaume Samson's avatar
Guillaume Samson committed
      !
      !                                           !---  salinity (with a minimum value imposed everywhere)
      IF( nn_icesal == 2 ) THEN
         WHERE( v_i(:,:,:) > epsi20 )   ;   s_i(:,:,:) = MAX( rn_simin , MIN( rn_simax, sv_i(:,:,:) * z1_v_i(:,:,:) ) )
         ELSEWHERE                      ;   s_i(:,:,:) = rn_simin
         END WHERE
      ENDIF
      CALL ice_var_salprof   ! salinity profile

      !-------------------
      ! Ice temperature   [K]   (with a minimum value (rt0 - 100.))
      !-------------------
      zlay_i   = REAL( nlay_i , wp )    ! number of layers
      DO jl = 1, jpl
Clement Rousset's avatar
Clement Rousset committed
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
Guillaume Samson's avatar
Guillaume Samson committed
            IF ( v_i(ji,jj,jl) > epsi20 ) THEN     !--- icy area
Clement Rousset's avatar
Clement Rousset committed
               DO jk = 1, nlay_i
                  !
                  ze_i             =   e_i (ji,jj,jk,jl) * z1_v_i(ji,jj,jl) * zlay_i             ! Energy of melting e(S,T) [J.m-3]
                  ztmelts          = - sz_i(ji,jj,jk,jl) * rTmlt                                 ! Ice layer melt temperature [C]
                  ! Conversion q(S,T) -> T (second order equation)
                  zbbb             = ( rcp - rcpi ) * ztmelts + ze_i * r1_rhoi - rLfus
                  zccc             = SQRT( MAX( zbbb * zbbb - 4._wp * rcpi * rLfus * ztmelts , 0._wp) )
                  t_i(ji,jj,jk,jl) = MAX( -100._wp , MIN( -( zbbb + zccc ) * 0.5_wp * r1_rcpi , ztmelts ) ) + rt0   ! [K] with bounds: -100 < t_i < ztmelts
                  !
               END DO
Guillaume Samson's avatar
Guillaume Samson committed
            ELSE                                   !--- no ice
Clement Rousset's avatar
Clement Rousset committed
               DO jk = 1, nlay_i
                  t_i(ji,jj,jk,jl) = rt0
               END DO
Guillaume Samson's avatar
Guillaume Samson committed
            ENDIF
Clement Rousset's avatar
Clement Rousset committed
         END_2D
Guillaume Samson's avatar
Guillaume Samson committed
      END DO

      !--------------------
      ! Snow temperature   [K]   (with a minimum value (rt0 - 100.))
      !--------------------
      zlay_s = REAL( nlay_s , wp )
      DO jk = 1, nlay_s
         WHERE( v_s(:,:,:) > epsi20 )        !--- icy area
            t_s(:,:,jk,:) = rt0 + MAX( -100._wp ,  &
                 &                MIN( r1_rcpi * ( -r1_rhos * ( e_s(:,:,jk,:) / v_s(:,:,:) * zlay_s ) + rLfus ) , 0._wp ) )
         ELSEWHERE                           !--- no ice
            t_s(:,:,jk,:) = rt0
         END WHERE
      END DO
      !
      ! integrated values
      vt_i (:,:) = SUM( v_i, dim=3 )
      vt_s (:,:) = SUM( v_s, dim=3 )
      at_i (:,:) = SUM( a_i, dim=3 )
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_glo2eqv


   SUBROUTINE ice_var_eqv2glo
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_eqv2glo ***
      !!
      !! ** Purpose :   computes global variables as function of
      !!              equivalent variables,  i.e. it turns VEQV into VGLO
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jl   ! dummy loop indices
      !!-------------------------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
      !
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            v_i (ji,jj,jl) = h_i (ji,jj,jl) * a_i (ji,jj,jl)
            v_s (ji,jj,jl) = h_s (ji,jj,jl) * a_i (ji,jj,jl)
            sv_i(ji,jj,jl) = s_i (ji,jj,jl) * v_i (ji,jj,jl)
            v_ip(ji,jj,jl) = h_ip(ji,jj,jl) * a_ip(ji,jj,jl)
            v_il(ji,jj,jl) = h_il(ji,jj,jl) * a_ip(ji,jj,jl)
         END_2D
      ENDDO
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_eqv2glo


   SUBROUTINE ice_var_salprof
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_salprof ***
      !!
      !! ** Purpose :   computes salinity profile in function of bulk salinity
      !!
      !! ** Method  : If bulk salinity greater than zsi1,
      !!              the profile is assumed to be constant (S_inf)
      !!              If bulk salinity lower than zsi0,
      !!              the profile is linear with 0 at the surface (S_zero)
      !!              If it is between zsi0 and zsi1, it is a
      !!              alpha-weighted linear combination of s_inf and s_zero
      !!
      !! ** References : Vancoppenolle et al., 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop index
      REAL(wp) ::   z1_dS
      REAL(wp) ::   ztmp1, ztmp2, zs0, zs
      REAL(wp) ::   z_slope_s, zalpha    ! case 2 only
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------

!!gm Question: Remove the option 3 ?  How many years since it last use ?

      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i(:,:,:,:) = rn_icesal
         s_i (:,:,:)   = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            DO jl = 1, jpl
Guillaume Samson's avatar
Guillaume Samson committed
               !                                      ! Slope of the linear profile
               IF( h_i(ji,jj,jl) > epsi20 ) THEN   ;   z_slope_s = 2._wp * s_i(ji,jj,jl) / h_i(ji,jj,jl)
               ELSE                                ;   z_slope_s = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
               ENDIF
               !
               zalpha = MAX(  0._wp , MIN( ( zsi1 - s_i(ji,jj,jl) ) * z1_dS , 1._wp )  )
Guillaume Samson's avatar
Guillaume Samson committed
               !                             ! force a constant profile when SSS too low (Baltic Sea)
               IF( 2._wp * s_i(ji,jj,jl) >= sss_m(ji,jj) )   zalpha = 0._wp
               !
               ! Computation of the profile
               DO jk = 1, nlay_i
                  !                          ! linear profile with 0 surface value
                  zs0 = z_slope_s * ( REAL(jk,wp) - 0.5_wp ) * h_i(ji,jj,jl) * r1_nlay_i
                  zs  = zalpha * zs0 + ( 1._wp - zalpha ) * s_i(ji,jj,jl)     ! weighting the profile
                  sz_i(ji,jj,jk,jl) = MIN( rn_simax, MAX( zs, rn_simin ) )
               ENDDO
            ENDDO
         END_2D
Guillaume Samson's avatar
Guillaume Samson committed
         !
         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i(:,:,:) = 2.30_wp
!!gm Remark: if we keep the case 3, then compute an store one for all time-step
!!           a array  S_prof(1:nlay_i) containing the calculation and just do:
!         DO jk = 1, nlay_i
!            sz_i(:,:,jk,:) = S_prof(jk)
!         END DO
!!gm end
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               ztmp1 = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
               ztmp2 = 1.6_wp * (  1._wp - COS( rpi * ztmp1**(0.407_wp/(0.573_wp+ztmp1)) ) )
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
                  sz_i(ji,jj,jk,jl) =  ztmp2
               END_2D
            END DO
         END DO
Guillaume Samson's avatar
Guillaume Samson committed
      END SELECT
      !
   END SUBROUTINE ice_var_salprof


   SUBROUTINE ice_var_salprof1d
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_var_salprof1d  ***
      !!
      !! ** Purpose :   1d computation of the sea ice salinity profile
      !!                Works with 1d vectors and is used by thermodynamic modules
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk    ! dummy loop indices
      REAL(wp) ::   ztmp1, ztmp2, z1_dS   ! local scalars
      REAL(wp) ::   zs, zs0              !   -      -
      !
      REAL(wp) ::   z_slope_s, zalpha   !
Guillaume Samson's avatar
Guillaume Samson committed
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------
      !
      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i_1d(1:npti,:) = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         DO ji = 1, npti
            !                                      ! Slope of the linear profile
            IF( h_i_1d(ji) > epsi20 ) THEN   ;   z_slope_s = 2._wp * s_i_1d(ji) / h_i_1d(ji)
            ELSE                             ;   z_slope_s = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
            ENDIF
            !
            zalpha = MAX(  0._wp , MIN(  ( zsi1 - s_i_1d(ji) ) * z1_dS , 1._wp  )  )
Guillaume Samson's avatar
Guillaume Samson committed
            !                             ! force a constant profile when SSS too low (Baltic Sea)
            IF( 2._wp * s_i_1d(ji) >= sss_1d(ji) )   zalpha = 0._wp
Guillaume Samson's avatar
Guillaume Samson committed
            !
            !
            ! Computation of the profile
            DO jk = 1, nlay_i
Guillaume Samson's avatar
Guillaume Samson committed
               !                          ! linear profile with 0 surface value
               zs0 = z_slope_s * ( REAL(jk,wp) - 0.5_wp ) * h_i_1d(ji) * r1_nlay_i
               zs  = zalpha * zs0 + ( 1._wp - zalpha ) * s_i_1d(ji)
Guillaume Samson's avatar
Guillaume Samson committed
               sz_i_1d(ji,jk) = MIN( rn_simax , MAX( zs , rn_simin ) )
            END DO
         END DO
         !
         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i_1d(1:npti) = 2.30_wp
         !
!!gm cf remark in ice_var_salprof routine, CASE( 3 )
         DO jk = 1, nlay_i
            ztmp1  = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
            ztmp2 =  1.6_wp * ( 1._wp - COS( rpi * ztmp1**( 0.407_wp / ( 0.573_wp + ztmp1 ) ) ) )
            DO ji = 1, npti
               sz_i_1d(ji,jk) = ztmp2
            END DO
         END DO
         !
      END SELECT
      !
   END SUBROUTINE ice_var_salprof1d


   SUBROUTINE ice_var_zapsmall
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapsmall ***
      !!
      !! ** Purpose :   Remove too small sea ice areas and correct fluxes
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj) ::   zswitch
      !!-------------------------------------------------------------------
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         WHERE( a_i(:,:,jl) > epsi10 )   ;   h_i(:,:,jl) = v_i(:,:,jl) / a_i(:,:,jl)
         ELSEWHERE                       ;   h_i(:,:,jl) = 0._wp
         END WHERE
         !
         WHERE( a_i(:,:,jl) < epsi10 .OR. v_i(:,:,jl) < epsi10 .OR. h_i(:,:,jl) < epsi10 )   ;   zswitch(:,:) = 0._wp
         ELSEWHERE                                                                           ;   zswitch(:,:) = 1._wp
         END WHERE
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !-----------------------------------------------------------------
            ! Zap ice energy and use ocean heat to melt ice
            !-----------------------------------------------------------------
            DO jk = 1, nlay_i
               ! update exchanges with ocean
               hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_i(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
               e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * zswitch(ji,jj)
               t_i(ji,jj,jk,jl) = t_i(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
            ENDDO
            !
            DO jk = 1, nlay_s
               ! update exchanges with ocean
               hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_s(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
               e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * zswitch(ji,jj)
               t_s(ji,jj,jk,jl) = t_s(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
            ENDDO
            !
            !-----------------------------------------------------------------
            ! zap ice and snow volume, add water and salt to ocean
            !-----------------------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
            ! update exchanges with ocean
            sfx_res(ji,jj)  = sfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * sv_i(ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_i (ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_s (ji,jj,jl)   * rhos * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * ( v_ip(ji,jj,jl)+v_il(ji,jj,jl) ) * rhow * r1_Dt_ice
Guillaume Samson's avatar
Guillaume Samson committed
            !
            a_i  (ji,jj,jl) = a_i (ji,jj,jl) * zswitch(ji,jj)
            v_i  (ji,jj,jl) = v_i (ji,jj,jl) * zswitch(ji,jj)
            v_s  (ji,jj,jl) = v_s (ji,jj,jl) * zswitch(ji,jj)
            t_su (ji,jj,jl) = t_su(ji,jj,jl) * zswitch(ji,jj) + t_bo(ji,jj) * ( 1._wp - zswitch(ji,jj) )
            oa_i (ji,jj,jl) = oa_i(ji,jj,jl) * zswitch(ji,jj)
            sv_i (ji,jj,jl) = sv_i(ji,jj,jl) * zswitch(ji,jj)
            !
            h_i (ji,jj,jl) = h_i (ji,jj,jl) * zswitch(ji,jj)
            h_s (ji,jj,jl) = h_s (ji,jj,jl) * zswitch(ji,jj)
            !
            a_ip (ji,jj,jl) = a_ip (ji,jj,jl) * zswitch(ji,jj)
            v_ip (ji,jj,jl) = v_ip (ji,jj,jl) * zswitch(ji,jj)
            v_il (ji,jj,jl) = v_il (ji,jj,jl) * zswitch(ji,jj)
            h_ip (ji,jj,jl) = h_ip (ji,jj,jl) * zswitch(ji,jj)
            h_il (ji,jj,jl) = h_il (ji,jj,jl) * zswitch(ji,jj)
            !
         END_2D
         !
      END DO

      ! to be sure that at_i is the sum of a_i(jl)
      at_i (:,:) = SUM( a_i (:,:,:), dim=3 )
      vt_i (:,:) = SUM( v_i (:,:,:), dim=3 )
!!clem add?
!      vt_s (:,:) = SUM( v_s (:,:,:), dim=3 )
!      st_i (:,:) = SUM( sv_i(:,:,:), dim=3 )
!      et_s(:,:)  = SUM( SUM( e_s (:,:,:,:), dim=4 ), dim=3 )
!      et_i(:,:)  = SUM( SUM( e_i (:,:,:,:), dim=4 ), dim=3 )
!!clem

      ! open water = 1 if at_i=0
      WHERE( at_i(:,:) == 0._wp )   ato_i(:,:) = 1._wp
      !
   END SUBROUTINE ice_var_zapsmall


   SUBROUTINE ice_var_zapneg( pdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapneg ***
      !!
      !! ** Purpose :   Remove negative sea ice fields and correct fluxes
      !!-------------------------------------------------------------------
      REAL(wp)                    , INTENT(in   ) ::   pdt        ! tracer time-step
      REAL(wp), DIMENSION(:,:)    , INTENT(inout) ::   pato_i     ! open water area
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp) ::   z1_dt
      !!-------------------------------------------------------------------
      !
      z1_dt = 1._wp / pdt
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         ! make sure a_i=0 where v_i<=0
         WHERE( pv_i(:,:,:) <= 0._wp )   pa_i(:,:,:) = 0._wp

         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !----------------------------------------
            ! zap ice energy and send it to the ocean
            !----------------------------------------
            DO jk = 1, nlay_i
               IF( pe_i(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
                  hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * z1_dt ! W.m-2 >0
                  pe_i(ji,jj,jk,jl) = 0._wp
               ENDIF
            ENDDO
            !
            DO jk = 1, nlay_s
               IF( pe_s(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
                  hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * z1_dt ! W.m-2 <0
                  pe_s(ji,jj,jk,jl) = 0._wp
               ENDIF
            ENDDO
            !
            !-----------------------------------------------------
            ! zap ice and snow volume, add water and salt to ocean
            !-----------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
            IF( pv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_i (ji,jj,jl) * rhoi * z1_dt
               pv_i   (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_s(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_s (ji,jj,jl) * rhos * z1_dt
               pv_s   (ji,jj,jl) = 0._wp
            ENDIF
            IF( psv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp .OR. pv_i(ji,jj,jl) <= 0._wp ) THEN
               sfx_res(ji,jj)    = sfx_res(ji,jj) + psv_i(ji,jj,jl) * rhoi * z1_dt
               psv_i  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pv_il(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_il(ji,jj,jl) * rhow * z1_dt
Guillaume Samson's avatar
Guillaume Samson committed
               pv_il  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_ip(ji,jj,jl) * rhow * z1_dt
Guillaume Samson's avatar
Guillaume Samson committed
               pv_ip  (ji,jj,jl) = 0._wp
            ENDIF
         END_2D
         !
      END DO
      !
      WHERE( pato_i(:,:)   < 0._wp )   pato_i(:,:)   = 0._wp
      WHERE( poa_i (:,:,:) < 0._wp )   poa_i (:,:,:) = 0._wp
      WHERE( pa_i  (:,:,:) < 0._wp )   pa_i  (:,:,:) = 0._wp
      WHERE( pa_ip (:,:,:) < 0._wp )   pa_ip (:,:,:) = 0._wp
      !
   END SUBROUTINE ice_var_zapneg


   SUBROUTINE ice_var_roundoff( pa_i, pv_i, pv_s, psv_i, poa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_roundoff ***
      !!
      !! ** Purpose :   Remove negative sea ice values arising from roundoff errors
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !!-------------------------------------------------------------------
      !

      WHERE( pa_i (1:npti,:)   < 0._wp )   pa_i (1:npti,:)   = 0._wp   !  a_i must be >= 0
      WHERE( pv_i (1:npti,:)   < 0._wp )   pv_i (1:npti,:)   = 0._wp   !  v_i must be >= 0
      WHERE( pv_s (1:npti,:)   < 0._wp )   pv_s (1:npti,:)   = 0._wp   !  v_s must be >= 0
      WHERE( psv_i(1:npti,:)   < 0._wp )   psv_i(1:npti,:)   = 0._wp   ! sv_i must be >= 0
      WHERE( poa_i(1:npti,:)   < 0._wp )   poa_i(1:npti,:)   = 0._wp   ! oa_i must be >= 0
      WHERE( pe_i (1:npti,:,:) < 0._wp )   pe_i (1:npti,:,:) = 0._wp   !  e_i must be >= 0
      WHERE( pe_s (1:npti,:,:) < 0._wp )   pe_s (1:npti,:,:) = 0._wp   !  e_s must be >= 0
      IF( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
         WHERE( pa_ip(1:npti,:) < 0._wp )    pa_ip(1:npti,:)   = 0._wp   ! a_ip must be >= 0
         WHERE( pv_ip(1:npti,:) < 0._wp )    pv_ip(1:npti,:)   = 0._wp   ! v_ip must be >= 0
         IF( ln_pnd_lids ) THEN
            WHERE( pv_il(1:npti,:) < 0._wp .AND. pv_il(1:npti,:) > -epsi10 ) pv_il(1:npti,:)   = 0._wp   ! v_il must be >= 0
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_var_roundoff


   SUBROUTINE ice_var_bv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_bv ***
      !!
      !! ** Purpose :   computes mean brine volume (%) in sea ice
      !!
      !! ** Method  : e = - 0.054 * S (ppt) / T (C)
      !!
      !! References : Vancoppenolle et al., JGR, 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      !!-------------------------------------------------------------------
      !
      bv_i (:,:,:) = 0._wp
      DO_2D( 0, 0, 0, 0 )
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               IF( t_i(ji,jj,jk,jl) < rt0 - epsi10 ) THEN
                  bv_i(ji,jj,jl) = bv_i(ji,jj,jl) - rTmlt * sz_i(ji,jj,jk,jl) * r1_nlay_i / ( t_i(ji,jj,jk,jl) - rt0 )
               ENDIF
            ENDDO
         ENDDO
         IF( vt_i(ji,jj) > epsi20 ) THEN
            bvm_i(ji,jj) = SUM( bv_i(ji,jj,:) * v_i(ji,jj,:) ) / vt_i(ji,jj)
         ELSE
            bvm_i(ji,jj) = 0._wp
         ENDIF
      END_2D
Guillaume Samson's avatar
Guillaume Samson committed
      !
   END SUBROUTINE ice_var_bv


   SUBROUTINE ice_var_enthalpy
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_enthalpy ***
      !!
      !! ** Purpose :   Computes sea ice energy of melting q_i (J.m-3) from temperature
      !!
      !! ** Method  :   Formula (Bitz and Lipscomb, 1999)
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk   ! dummy loop indices
      REAL(wp) ::   ztmelts  ! local scalar
      !!-------------------------------------------------------------------
      !
      DO ji = 1, npti
         DO jk = 1, nlay_i             ! Sea ice energy of melting
Guillaume Samson's avatar
Guillaume Samson committed
            ztmelts      = - rTmlt  * sz_i_1d(ji,jk)
            t_i_1d(ji,jk) = MIN( t_i_1d(ji,jk), ztmelts + rt0 ) ! Force t_i_1d to be lower than melting point => likely conservation issue
                                                                !   (sometimes zdf scheme produces abnormally high temperatures)
            e_i_1d(ji,jk) = rhoi * ( rcpi  * ( ztmelts - ( t_i_1d(ji,jk) - rt0 ) )           &
               &                   + rLfus * ( 1._wp - ztmelts / ( t_i_1d(ji,jk) - rt0 ) )   &
               &                   - rcp   * ztmelts )
         END DO
         DO jk = 1, nlay_s             ! Snow energy of melting
Guillaume Samson's avatar
Guillaume Samson committed
            e_s_1d(ji,jk) = rhos * ( rcpi * ( rt0 - t_s_1d(ji,jk) ) + rLfus )
         END DO
      END DO
      !
   END SUBROUTINE ice_var_enthalpy


   FUNCTION ice_var_sshdyn(pssh, psnwice_mass, psnwice_mass_b)
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_sshdyn  ***
      !!
      !! ** Purpose :  compute the equivalent ssh in lead when sea ice is embedded
      !!
      !! ** Method  :  ssh_lead = ssh + (Mice + Msnow) / rho0
      !!
      !! ** Reference : Jean-Michel Campin, John Marshall, David Ferreira,
      !!                Sea ice-ocean coupling using a rescaled vertical coordinate z*,
      !!                Ocean Modelling, Volume 24, Issues 1-2, 2008
      !!----------------------------------------------------------------------
      !
      ! input
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pssh            !: ssh [m]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass    !: mass of snow and ice at current  ice time step [Kg/m2]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass_b  !: mass of snow and ice at previous ice time step [Kg/m2]
      !
      ! output
      REAL(wp), DIMENSION(jpi,jpj) :: ice_var_sshdyn  ! equivalent ssh in lead [m]
      !
      ! temporary
      REAL(wp) :: zintn, zintb                     ! time interpolation weights []
      !
      ! compute ice load used to define the equivalent ssh in lead
      IF( ln_ice_embd ) THEN
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   * {SUM[n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * {SUM[n]        , n=0,nn_fsbc-1}
         zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   *    {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1})
         zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:) + ( zintn * psnwice_mass(:,:) + zintb * psnwice_mass_b(:,:) ) * r1_rho0
         !
      ELSE
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:)
      ENDIF
      !
   END FUNCTION ice_var_sshdyn


   !!-------------------------------------------------------------------
   !!                ***  INTERFACE ice_var_itd   ***
   !!
   !! ** Purpose :  converting N-cat ice to jpl ice categories
   !!-------------------------------------------------------------------
   SUBROUTINE ice_var_itd_1c1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting 1-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !!-------------------------------------------------------------------
      ! == thickness and concentration == !
      ph_i(:) = phti(:)
      ph_s(:) = phts(:)
      pa_i(:) = pati(:)
      !
      ! == temperature and salinity and ponds == !
      pt_i (:) = ptmi (:)
      pt_s (:) = ptms (:)
      pt_su(:) = ptmsu(:)
      ps_i (:) = psmi (:)
      pa_ip(:) = patip(:)
      ph_ip(:) = phtip(:)
      ph_il(:) = phtil(:)

   END SUBROUTINE ice_var_itd_1c1c

   SUBROUTINE ice_var_itd_Nc1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting N-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   z1_ai, z1_vi, z1_vs
      !
      INTEGER ::   idim
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti, 1 )
      !
      ! == thickness and concentration == !
      ALLOCATE( z1_ai(idim), z1_vi(idim), z1_vs(idim) )
      !
      pa_i(:) = SUM( pati(:,:), dim=2 )

      WHERE( ( pa_i(:) ) /= 0._wp )   ;   z1_ai(:) = 1._wp / pa_i(:)
      ELSEWHERE                       ;   z1_ai(:) = 0._wp
      END WHERE

      ph_i(:) = SUM( phti(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      ph_s(:) = SUM( phts(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      !
      ! == temperature and salinity == !
      WHERE( ( pa_i(:) * ph_i(:) ) /= 0._wp )   ;   z1_vi(:) = 1._wp / ( pa_i(:) * ph_i(:) )
      ELSEWHERE                                 ;   z1_vi(:) = 0._wp
      END WHERE
      WHERE( ( pa_i(:) * ph_s(:) ) /= 0._wp )   ;   z1_vs(:) = 1._wp / ( pa_i(:) * ph_s(:) )
      ELSEWHERE                                 ;   z1_vs(:) = 0._wp
      END WHERE
      pt_i (:) = SUM( ptmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)
      pt_s (:) = SUM( ptms (:,:) * pati(:,:) * phts(:,:), dim=2 ) * z1_vs(:)
      pt_su(:) = SUM( ptmsu(:,:) * pati(:,:)            , dim=2 ) * z1_ai(:)
      ps_i (:) = SUM( psmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)

      ! == ponds == !
      pa_ip(:) = SUM( patip(:,:), dim=2 )
      WHERE( pa_ip(:) /= 0._wp )
         ph_ip(:) = SUM( phtip(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
         ph_il(:) = SUM( phtil(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
      ELSEWHERE
         ph_ip(:) = 0._wp
         ph_il(:) = 0._wp
      END WHERE
      !
      DEALLOCATE( z1_ai, z1_vi, z1_vs )
      !
   END SUBROUTINE ice_var_itd_Nc1c

   SUBROUTINE ice_var_itd_1cMc( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !!
      !! ** Purpose :  converting 1-cat ice to jpl ice categories
      !!
      !!
      !! ** Method:   ice thickness distribution follows a gamma function from Abraham et al. (2015)
      !!              it has the property of conserving total concentration and volume
      !!
      !!
      !! ** Arguments : phti: 1-cat ice thickness
      !!                phts: 1-cat snow depth
      !!                pati: 1-cat ice concentration
      !!
      !! ** Output    : jpl-cat
      !!
      !!  Abraham, C., Steiner, N., Monahan, A. and Michel, C., 2015.
      !!               Effects of subgrid‐scale snow thickness variability on radiative transfer in sea ice.
      !!               Journal of Geophysical Research: Oceans, 120(8), pp.5597-5614
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:),   INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   zfra, z1_hti
      INTEGER  ::   ji, jk, jl
      INTEGER  ::   idim
      REAL(wp) ::   zv, zdh
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti , 1 )
      !
      ph_i(1:idim,1:jpl) = 0._wp
      ph_s(1:idim,1:jpl) = 0._wp
      pa_i(1:idim,1:jpl) = 0._wp
      !
      ALLOCATE( z1_hti(idim) )
      WHERE( phti(:) /= 0._wp )   ;   z1_hti(:) = 1._wp / phti(:)
      ELSEWHERE                   ;   z1_hti(:) = 0._wp
      END WHERE
      !
      ! == thickness and concentration == !
      ! for categories 1:jpl-1, integrate the gamma function from hi_max(jl-1) to hi_max(jl)
      DO jl = 1, jpl-1
         DO ji = 1, idim
            !
            IF( phti(ji) > 0._wp ) THEN
               ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               pa_i(ji,jl) = pati(ji) * z1_hti(ji) * (  ( phti(ji) + 2.*hi_max(jl-1) ) * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                                   - ( phti(ji) + 2.*hi_max(jl  ) ) * EXP( -2.*hi_max(jl  )*z1_hti(ji) ) )
               !
               ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               zv = pati(ji) * z1_hti(ji) * (  ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl-1) + 2.*hi_max(jl-1)*hi_max(jl-1) ) &
                  &                            * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                          - ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl) + 2.*hi_max(jl)*hi_max(jl) ) &
                  &                            * EXP(-2.*hi_max(jl)*z1_hti(ji)) )
               ! thickness
               IF( pa_i(ji,jl) > epsi06 ) THEN
                  ph_i(ji,jl) = zv / pa_i(ji,jl)
               ELSE
                  ph_i(ji,jl) = 0.
                  pa_i(ji,jl) = 0.
               ENDIF
            ENDIF
            !
         ENDDO
      ENDDO
      !
      ! for the last category (jpl), integrate the gamma function from hi_max(jpl-1) to infinity
      DO ji = 1, idim
         !
         IF( phti(ji) > 0._wp ) THEN
            ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            pa_i(ji,jpl) = pati(ji) * z1_hti(ji) * ( phti(ji) + 2.*hi_max(jpl-1) ) * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )

            ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            zv = pati(ji) * z1_hti(ji) * ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jpl-1) + 2.*hi_max(jpl-1)*hi_max(jpl-1) ) &
               &                         * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )
            ! thickness
            IF( pa_i(ji,jpl) > epsi06 ) THEN
               ph_i(ji,jpl) = zv / pa_i(ji,jpl)
            else
               ph_i(ji,jpl) = 0.
               pa_i(ji,jpl) = 0.
            ENDIF
         ENDIF
         !
      ENDDO
      !
      ! Add Snow in each category where pa_i is not 0
      DO jl = 1, jpl
         DO ji = 1, idim
            IF( pa_i(ji,jl) > 0._wp ) THEN
               ph_s(ji,jl) = ph_i(ji,jl) * phts(ji) * z1_hti(ji)
               ! In case snow load is in excess that would lead to transformation from snow to ice
               ! Then, transfer the snow excess into the ice (different from icethd_dh)
               zdh = MAX( 0._wp, ( rhos * ph_s(ji,jl) + ( rhoi - rho0 ) * ph_i(ji,jl) ) * r1_rho0 )
               ! recompute h_i, h_s avoiding out of bounds values
               ph_i(ji,jl) = MIN( hi_max(jl), ph_i(ji,jl) + zdh )
               ph_s(ji,jl) = MAX( 0._wp, ph_s(ji,jl) - zdh * rhoi * r1_rhos )
            ENDIF