Newer
Older
MODULE dynvor
!!======================================================================
!! *** MODULE dynvor ***
!! Ocean dynamics: Update the momentum trend with the relative and
!! planetary vorticity trends
!!======================================================================
!! History : OPA ! 1989-12 (P. Andrich) vor_ens: Original code
!! 5.0 ! 1991-11 (G. Madec) vor_ene, vor_mix: Original code
!! 6.0 ! 1996-01 (G. Madec) s-coord, suppress work arrays
!! NEMO 0.5 ! 2002-08 (G. Madec) F90: Free form and module
!! 1.0 ! 2004-02 (G. Madec) vor_een: Original code
!! - ! 2003-08 (G. Madec) add vor_ctl
!! - ! 2005-11 (G. Madec) add dyn_vor (new step architecture)
!! 2.0 ! 2006-11 (G. Madec) flux form advection: add metric term
!! 3.2 ! 2009-04 (R. Benshila) vvl: correction of een scheme
!! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase
!! 3.7 ! 2014-04 (G. Madec) trend simplification: suppress jpdyn_trd_dat vorticity
!! - ! 2014-06 (G. Madec) suppression of velocity curl from in-core memory
!! - ! 2016-12 (G. Madec, E. Clementi) add Stokes-Coriolis trends (ln_stcor=T)
!! 4.0 ! 2017-07 (G. Madec) linear dynamics + trends diag. with Stokes-Coriolis
!! - ! 2018-03 (G. Madec) add two new schemes (ln_dynvor_enT and ln_dynvor_eet)
!! - ! 2018-04 (G. Madec) add pre-computed gradient for metric term calculation
!! 4.x ! 2020-03 (G. Madec, A. Nasser) make ln_dynvor_msk truly efficient on relative vorticity
!! 4.2 ! 2020-12 (G. Madec, E. Clementi) add vortex force trends (ln_vortex_force=T)
!! 4.5 ! 2022-06 (S. Techene, G, Madec) refactorization to reduce local memory usage
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dyn_vor : Update the momentum trend with the vorticity trend
!! vor_enT : energy conserving scheme at T-pt (ln_dynvor_enT=T)
!! vor_ene : energy conserving scheme (ln_dynvor_ene=T)
!! vor_ens : enstrophy conserving scheme (ln_dynvor_ens=T)
!! vor_een : energy and enstrophy conserving (ln_dynvor_een=T)
!! vor_eeT : energy conserving at T-pt (ln_dynvor_eeT=T)
!! dyn_vor_init : set and control of the different vorticity option
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE dommsk ! ocean mask
USE dynadv ! momentum advection
USE trd_oce ! trends: ocean variables
USE trddyn ! trend manager: dynamics
USE sbcwave ! Surface Waves (add Stokes-Coriolis force)
USE sbc_oce, ONLY : ln_stcor, ln_vortex_force ! use Stoke-Coriolis force
!
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE prtctl ! Print control
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE timing ! Timing
IMPLICIT NONE
PRIVATE
INTERFACE dyn_vor
MODULE PROCEDURE dyn_vor_3D, dyn_vor_RK3
END INTERFACE
PUBLIC dyn_vor ! routine called by step.F90
PUBLIC dyn_vor_init ! routine called by nemogcm.F90
! !!* Namelist namdyn_vor: vorticity term
LOGICAL, PUBLIC :: ln_dynvor_ens !: enstrophy conserving scheme (ENS)
LOGICAL, PUBLIC :: ln_dynvor_ene !: f-point energy conserving scheme (ENE)
LOGICAL, PUBLIC :: ln_dynvor_enT !: t-point energy conserving scheme (ENT)
LOGICAL, PUBLIC :: ln_dynvor_eeT !: t-point energy conserving scheme (EET)
LOGICAL, PUBLIC :: ln_dynvor_een !: energy & enstrophy conserving scheme (EEN)
LOGICAL, PUBLIC :: ln_dynvor_mix !: mixed scheme (MIX)
LOGICAL, PUBLIC :: ln_dynvor_msk !: vorticity multiplied by fmask (=T) or not (=F) (all vorticity schemes)
INTEGER, PUBLIC :: nn_e3f_typ !: e3f=masked averaging of e3t divided by 4 (=0) or by the sum of mask (=1)
INTEGER, PUBLIC :: nvor_scheme !: choice of the type of advection scheme
! ! associated indices:
INTEGER, PUBLIC, PARAMETER :: np_ENS = 0 ! ENS scheme
INTEGER, PUBLIC, PARAMETER :: np_ENE = 1 ! ENE scheme
INTEGER, PUBLIC, PARAMETER :: np_ENT = 2 ! ENT scheme (t-point vorticity)
INTEGER, PUBLIC, PARAMETER :: np_EET = 3 ! EET scheme (EEN using e3t)
INTEGER, PUBLIC, PARAMETER :: np_EEN = 4 ! EEN scheme
INTEGER, PUBLIC, PARAMETER :: np_MIX = 5 ! MIX scheme
! !: choice of calculated vorticity
INTEGER, PUBLIC :: ncor, nrvm, ntot ! Coriolis, relative vorticity, total vorticity
! ! associated indices:
INTEGER, PUBLIC, PARAMETER :: np_COR = 1 ! Coriolis (planetary)
INTEGER, PUBLIC, PARAMETER :: np_RVO = 2 ! relative vorticity
INTEGER, PUBLIC, PARAMETER :: np_MET = 3 ! metric term
INTEGER, PUBLIC, PARAMETER :: np_CRV = 4 ! relative + planetary (total vorticity)
INTEGER, PUBLIC, PARAMETER :: np_CME = 5 ! Coriolis + metric term
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: di_e2u_2 ! = di(e2u)/2 used in T-point metric term calculation
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: dj_e1v_2 ! = dj(e1v)/2 - - - -
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: di_e2v_2e1e2f ! = di(e2u)/(2*e1e2f) used in F-point metric term calculation
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: dj_e1u_2e1e2f ! = dj(e1v)/(2*e1e2f) - - - -
!
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: e3f_0vor ! e3f used in EEN, ENE and ENS cases (key_qco only)
REAL(wp) :: r1_4 = 0.250_wp ! =1/4
REAL(wp) :: r1_8 = 0.125_wp ! =1/8
REAL(wp) :: r1_12 = 1._wp / 12._wp ! 1/12
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: dynvor.F90 14547 2021-02-25 17:07:15Z techene $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE dyn_vor_3D( kt, Kmm, puu, pvv, Krhs )
!!----------------------------------------------------------------------
!!
!! ** Purpose : compute the lateral ocean tracer physics.
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now vorticity term trend
!! - save the trends in (ztrdu,ztrdv) in 2 parts (relative
!! and planetary vorticity trends) and send them to trd_dyn
!! for futher diagnostics (l_trddyn=T)
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocity field and RHS of momentum equation
!
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdu, ztrdv
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dyn_vor_3D')
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
!
IF( l_trddyn ) THEN !== trend diagnostics case : split the added trend in two parts ==!
!
ALLOCATE( ztrdu(jpi,jpj,jpk), ztrdv(jpi,jpj,jpk) )
!
ztrdu(:,:,:) = puu(:,:,:,Krhs) !* planetary vorticity trend
ztrdv(:,:,:) = pvv(:,:,:,Krhs)
SELECT CASE( nvor_scheme )
CASE( np_ENS ) ; CALL vor_ens( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! enstrophy conserving scheme
CASE( np_ENE, np_MIX ) ; CALL vor_ene( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme
CASE( np_ENT ) ; CALL vor_enT( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme (T-pts)
CASE( np_EET ) ; CALL vor_eeT( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme (een with e3t)
CASE( np_EEN ) ; CALL vor_een( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy & enstrophy scheme
END SELECT
ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:)
ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:)
CALL trd_dyn( ztrdu, ztrdv, jpdyn_pvo, kt, Kmm )
!
IF( n_dynadv /= np_LIN_dyn ) THEN !* relative vorticity or metric trend (only in non-linear case)
ztrdu(:,:,:) = puu(:,:,:,Krhs)
ztrdv(:,:,:) = pvv(:,:,:,Krhs)
SELECT CASE( nvor_scheme )
CASE( np_ENT ) ; CALL vor_enT( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme (T-pts)
CASE( np_EET ) ; CALL vor_eeT( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme (een with e3t)
CASE( np_ENE ) ; CALL vor_ene( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy conserving scheme
CASE( np_ENS, np_MIX ) ; CALL vor_ens( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! enstrophy conserving scheme
CASE( np_EEN ) ; CALL vor_een( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! energy & enstrophy scheme
END SELECT
ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:)
ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:)
CALL trd_dyn( ztrdu, ztrdv, jpdyn_rvo, kt, Kmm )
ENDIF
!
DEALLOCATE( ztrdu, ztrdv )
!
ELSE !== total vorticity trend added to the general trend ==!
!
SELECT CASE ( nvor_scheme ) !== vorticity trend added to the general trend ==!
CASE( np_ENT ) !* energy conserving scheme (T-pts)
CALL vor_enT( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_enT( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_enT( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_EET ) !* energy conserving scheme (een scheme using e3t)
IF( nn_hls == 1 ) THEN
CALL vor_eeT_hls1( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_eeT_hls1( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_eeT_hls1( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
ELSE
CALL vor_eeT( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_eeT( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_eeT( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_ENE ) !* energy conserving scheme
CALL vor_ene( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_ene( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_ene( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_ENS ) !* enstrophy conserving scheme
CALL vor_ens( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_ens( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_ens( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_MIX ) !* mixed ene-ens scheme
CALL vor_ens( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! relative vorticity or metric trend (ens)
CALL vor_ene( kt, Kmm, ncor, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! planetary vorticity trend (ene)
IF( ln_stcor ) CALL vor_ene( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
IF( ln_vortex_force ) CALL vor_ens( kt, Kmm, nrvm, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add vortex force
CASE( np_EEN ) !* energy and enstrophy conserving scheme
IF( nn_hls == 1 ) THEN
CALL vor_een_hls1( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_een_hls1( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_een_hls1( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
ELSE
CALL vor_een( kt, Kmm, ntot, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_een( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_een( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
END SELECT
!
ENDIF
!
! ! print sum trends (used for debugging)
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' vor - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
IF( ln_timing ) CALL timing_stop('dyn_vor_3D')
!
END SUBROUTINE dyn_vor_3D
SUBROUTINE dyn_vor_RK3( kt, Kmm, puu, pvv, Krhs, knoco )
!!----------------------------------------------------------------------
!!
!! ** Purpose : compute the lateral ocean tracer physics.
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now vorticity term trend
!! - save the trends in (ztrdu,ztrdv) in 2 parts (relative
!! and planetary vorticity trends) and send them to trd_dyn
!! for futher diagnostics (l_trddyn=T)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocity field and RHS of momentum equation
INTEGER , INTENT(in ) :: knoco ! specified vorticity trend (= np_MET or np_RVO)
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dyn_vor_RK3')
!
! !== total vorticity trend added to the general trend ==!
!!st WARNING 22/02 !!!!!!!! stoke drift or not stoke drift ? => bar to do later !!!
!! stoke drift a garder pas vortex force a priori !!
!! ATTENTION déja appelé avec Kbb !!
!
SELECT CASE ( nvor_scheme ) !== vorticity trend added to the general trend ==!
CASE( np_ENT ) !* energy conserving scheme (T-pts)
CALL vor_enT( kt, Kmm, knoco, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_enT( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_enT( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_EET ) !* energy conserving scheme (een scheme using e3t)
CALL vor_eeT( kt, Kmm, knoco, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_eeT( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_eeT( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_ENE ) !* energy conserving scheme
CALL vor_ene( kt, Kmm, knoco, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_ene( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_ene( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_ENS ) !* enstrophy conserving scheme
CALL vor_ens( kt, Kmm, knoco, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_ens( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_ens( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
CASE( np_MIX ) !* mixed ene-ens scheme
CALL vor_ens( kt, Kmm, nrvm, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! relative vorticity or metric trend (ens)
IF( ln_stcor ) CALL vor_ene( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
IF( ln_vortex_force ) CALL vor_ens( kt, Kmm, nrvm, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add vortex force
CASE( np_EEN ) !* energy and enstrophy conserving scheme
CALL vor_een( kt, Kmm, knoco, puu(:,:,:,Kmm) , pvv(:,:,:,Kmm) , puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! total vorticity trend
IF( ln_stcor .AND. .NOT. ln_vortex_force ) THEN
CALL vor_een( kt, Kmm, ncor, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend
ELSE IF( ln_stcor .AND. ln_vortex_force ) THEN
CALL vor_een( kt, Kmm, ntot, usd, vsd, puu(:,:,:,Krhs), pvv(:,:,:,Krhs) ) ! add the Stokes-Coriolis trend and vortex force
ENDIF
END SELECT
!
! ! print sum trends (used for debugging)
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' vor - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
IF( ln_timing ) CALL timing_stop('dyn_vor_RK3')
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
SUBROUTINE vor_enT( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_enT ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and t-point evaluation of vorticity (planetary and relative).
!! conserves the horizontal kinetic energy.
!! The general trend of momentum is increased due to the vorticity
!! term which is given by:
!! voru = 1/bu mj[ ( mi(mj(bf*rvor))+bt*f_t)/e3t mj[vn] ]
!! vorv = 1/bv mi[ ( mi(mj(bf*rvor))+bt*f_t)/e3f mj[un] ]
!! where rvor is the relative vorticity at f-point
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zx1, zy1, zx2, zy2 ! local scalars
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
REAL(wp), DIMENSION(A2D(1)) :: zwx, zwy, zwt ! 2D workspace
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zwz ! 3D workspace, jpkm1 -> avoid lbc_lnk on jpk that is not defined
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_enT : vorticity term: t-point energy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
SELECT CASE( kvor ) !== relative vorticity considered ==!
!
CASE ( np_RVO , np_CRV ) !* relative vorticity at f-point is used
ALLOCATE( zwz(A2D(1)) )
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( e2v(ji+1,jj) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk)
END_2D
ENDIF
!
END SELECT
!
SELECT CASE( kvor ) !== volume weighted vorticity considered ==!
!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ff_t(ji,jj) * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = r1_4 * ( zwz(ji-1,jj ) + zwz(ji,jj ) &
& + zwz(ji-1,jj-1) + zwz(ji,jj-1) ) &
& * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_MET ) !* metric term
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) &
& - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) &
& * e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ff_t(ji,jj) + r1_4 * ( zwz(ji-1,jj ) + zwz(ji,jj ) &
& + zwz(ji-1,jj-1) + zwz(ji,jj-1) ) ) &
& * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ff_t(ji,jj) * e1e2t(ji,jj) &
& + ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) &
& - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) &
& * e3t(ji,jj,jk,Kmm)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor')
END SELECT
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 0, 0, 0 )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + r1_4 * r1_e1e2u(ji,jj) / e3u(ji,jj,jk,Kmm) &
& * ( zwt(ji+1,jj) * ( pv(ji+1,jj,jk) + pv(ji+1,jj-1,jk) ) &
& + zwt(ji ,jj) * ( pv(ji ,jj,jk) + pv(ji ,jj-1,jk) ) )
!
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) - r1_4 * r1_e1e2v(ji,jj) / e3v(ji,jj,jk,Kmm) &
& * ( zwt(ji,jj+1) * ( pu(ji,jj+1,jk) + pu(ji-1,jj+1,jk) ) &
& + zwt(ji,jj ) * ( pu(ji,jj ,jk) + pu(ji-1,jj ,jk) ) )
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
!
SELECT CASE( kvor ) ! deallocate zwz if necessary
CASE ( np_RVO , np_CRV ) ; DEALLOCATE( zwz )
END SELECT
!
END SUBROUTINE vor_enT
SUBROUTINE vor_enT_hls1( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_enT ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and t-point evaluation of vorticity (planetary and relative).
!! conserves the horizontal kinetic energy.
!! The general trend of momentum is increased due to the vorticity
!! term which is given by:
!! voru = 1/bu mj[ ( mi(mj(bf*rvor))+bt*f_t)/e3t mj[vn] ]
!! vorv = 1/bv mi[ ( mi(mj(bf*rvor))+bt*f_t)/e3f mj[un] ]
!! where rvor is the relative vorticity at f-point
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zx1, zy1, zx2, zy2 ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: zwx, zwy, zwt ! 2D workspace
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zwz ! 3D workspace, jpkm1 -> avoid lbc_lnk on jpk that is not defined
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_enT : vorticity term: t-point energy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
!
SELECT CASE( kvor ) !== relative vorticity considered ==!
!
CASE ( np_RVO , np_CRV ) !* relative vorticity at f-point is used
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
DO jk = 1, jpkm1 ! Horizontal slab
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( e2v(ji+1,jj) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = zwz(ji,jj,jk) * fmask(ji,jj,jk)
END_2D
ENDIF
END DO
IF (nn_hls==1) CALL lbc_lnk( 'dynvor', zwz, 'F', 1.0_wp )
!
END SELECT
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
SELECT CASE( kvor ) !== volume weighted vorticity considered ==!
!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ff_t(ji,jj) * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = r1_4 * ( zwz(ji-1,jj ,jk) + zwz(ji,jj ,jk) &
& + zwz(ji-1,jj-1,jk) + zwz(ji,jj-1,jk) ) &
& * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_MET ) !* metric term
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) &
& - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) &
& * e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ff_t(ji,jj) + r1_4 * ( zwz(ji-1,jj ,jk) + zwz(ji,jj ,jk) &
& + zwz(ji-1,jj-1,jk) + zwz(ji,jj-1,jk) ) ) &
& * e1e2t(ji,jj)*e3t(ji,jj,jk,Kmm)
END_2D
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 0, 1, 0, 1 )
zwt(ji,jj) = ( ff_t(ji,jj) * e1e2t(ji,jj) &
& + ( pv(ji,jj,jk) + pv(ji,jj-1,jk) ) * di_e2u_2(ji,jj) &
& - ( pu(ji,jj,jk) + pu(ji-1,jj,jk) ) * dj_e1v_2(ji,jj) ) &
& * e3t(ji,jj,jk,Kmm)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor')
END SELECT
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 0, 0, 0 )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + r1_4 * r1_e1e2u(ji,jj) / e3u(ji,jj,jk,Kmm) &
& * ( zwt(ji+1,jj) * ( pv(ji+1,jj,jk) + pv(ji+1,jj-1,jk) ) &
& + zwt(ji ,jj) * ( pv(ji ,jj,jk) + pv(ji ,jj-1,jk) ) )
!
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) - r1_4 * r1_e1e2v(ji,jj) / e3v(ji,jj,jk,Kmm) &
& * ( zwt(ji,jj+1) * ( pu(ji,jj+1,jk) + pu(ji-1,jj+1,jk) ) &
& + zwt(ji,jj ) * ( pu(ji,jj ,jk) + pu(ji-1,jj ,jk) ) )
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
!
SELECT CASE( kvor ) ! deallocate zwz if necessary
CASE ( np_RVO , np_CRV ) ; DEALLOCATE( zwz )
END SELECT
!
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
SUBROUTINE vor_ene( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_ene ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Sadourny (1975) flux form formulation : conserves the
!! horizontal kinetic energy.
!! The general trend of momentum is increased due to the vorticity
!! term which is given by:
!! voru = 1/e1u mj-1[ (rvor+f)/e3f mi(e1v*e3v pvv(:,:,:,Kmm)) ]
!! vorv = 1/e2v mi-1[ (rvor+f)/e3f mj(e2u*e3u puu(:,:,:,Kmm)) ]
!! where rvor is the relative vorticity
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!
!! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zx1, zy1, zx2, zy2, ze3f, zmsk ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: zwx, zwy, zwz ! 2D workspace
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_ene : vorticity term: energy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
SELECT CASE( kvor ) !== vorticity considered ==!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji ,jj+1) * pu(ji ,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj) + ( e2v(ji+1,jj) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity (NOT the Coriolis term)
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( zwz(ji,jj) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
!
#if defined key_qco || defined key_linssh
DO_2D( 1, 0, 1, 0 ) !== potential vorticity ==! (key_qco)
zwz(ji,jj) = zwz(ji,jj) / e3f_vor(ji,jj,jk)
END_2D
#else
SELECT CASE( nn_e3f_typ ) !== potential vorticity ==!
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_2D( 1, 0, 1, 0 )
ze3f = ( e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk) &
& + e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; zwz(ji,jj) = zwz(ji,jj) * 4._wp / ze3f
ELSE ; zwz(ji,jj) = 0._wp
ENDIF
END_2D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_2D( 1, 0, 1, 0 )
ze3f = ( e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk) &
& + e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk) )
zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; zwz(ji,jj) = zwz(ji,jj) * zmsk / ze3f
ELSE ; zwz(ji,jj) = 0._wp
ENDIF
END_2D
END SELECT
#endif
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 0, 0, 0 )
zy1 = zwy(ji,jj-1) + zwy(ji+1,jj-1)
zy2 = zwy(ji,jj ) + zwy(ji+1,jj )
zx1 = zwx(ji-1,jj) + zwx(ji-1,jj+1)
zx2 = zwx(ji ,jj) + zwx(ji ,jj+1)
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + r1_4 * r1_e1u(ji,jj) * ( zwz(ji ,jj-1) * zy1 + zwz(ji,jj) * zy2 )
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) - r1_4 * r1_e2v(ji,jj) * ( zwz(ji-1,jj ) * zx1 + zwz(ji,jj) * zx2 )
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
END SUBROUTINE vor_ene
SUBROUTINE vor_ens( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_ens ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Sadourny (1975) flux FORM formulation : conserves the
!! potential enstrophy of a horizontally non-divergent flow. the
!! trend of the vorticity term is given by:
!! voru = 1/e1u mj-1[ (rvor+f)/e3f ] mj-1[ mi(e1v*e3v pvv(:,:,:,Kmm)) ]
!! vorv = 1/e2v mi-1[ (rvor+f)/e3f ] mi-1[ mj(e2u*e3u puu(:,:,:,Kmm)) ]
!! Add this trend to the general momentum trend:
!! (u(rhs),v(Krhs)) = (u(rhs),v(Krhs)) + ( voru , vorv )
!!
!! ** Action : - Update (pu_rhs,pv_rhs)) arrays with the now vorticity term trend
!!
!! References : Sadourny, r., 1975, j. atmos. sciences, 32, 680-689.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zuav, zvau, ze3f, zmsk ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: zwx, zwy, zwz ! 2D workspace
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_ens : vorticity term: enstrophy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
SELECT CASE( kvor ) !== vorticity considered ==!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji ,jj+1) * pu(ji ,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj) + ( e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji ,jj+1) * pu(ji ,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity (NOT the Coriolis term)
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ( zwz(ji,jj) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 1, 0, 1, 0 )
zwz(ji,jj) = ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
!
!
#if defined key_qco || defined key_linssh
DO_2D( 1, 0, 1, 0 ) !== potential vorticity ==! (key_qco)
zwz(ji,jj) = zwz(ji,jj) / e3f_vor(ji,jj,jk)
END_2D
#else
SELECT CASE( nn_e3f_typ ) !== potential vorticity ==!
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_2D( 1, 0, 1, 0 )
ze3f = ( e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk) &
& + e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; zwz(ji,jj) = zwz(ji,jj) * 4._wp / ze3f
ELSE ; zwz(ji,jj) = 0._wp
ENDIF
END_2D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_2D( 1, 0, 1, 0 )
ze3f = ( e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk) &
& + e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk) )
zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; zwz(ji,jj) = zwz(ji,jj) * zmsk / ze3f
ELSE ; zwz(ji,jj) = 0._wp
ENDIF
END_2D
END SELECT
#endif
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 0, 0, 0 )
zuav = r1_8 * r1_e1u(ji,jj) * ( zwy(ji ,jj-1) + zwy(ji+1,jj-1) &
& + zwy(ji ,jj ) + zwy(ji+1,jj ) )
zvau =-r1_8 * r1_e2v(ji,jj) * ( zwx(ji-1,jj ) + zwx(ji-1,jj+1) &
& + zwx(ji ,jj ) + zwx(ji ,jj+1) )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zuav * ( zwz(ji ,jj-1) + zwz(ji,jj) )
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zvau * ( zwz(ji-1,jj ) + zwz(ji,jj) )
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
END SUBROUTINE vor_ens
SUBROUTINE vor_een( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_een ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Arakawa and Lamb (1980) flux form formulation : conserves
!! both the horizontal kinetic energy and the potential enstrophy
!! when horizontal divergence is zero (see the NEMO documentation)
!! Add this trend to the general momentum trend (pu_rhs,pv_rhs).
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!
!! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zua, zva ! local scalars
REAL(wp) :: zmsk, ze3f ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: z1_e3f
#if defined key_loop_fusion
REAL(wp) :: ztne, ztnw, ztnw_ip1, ztse, ztse_jp1, ztsw_jp1, ztsw_ip1
REAL(wp) :: zwx, zwx_im1, zwx_jp1, zwx_im1_jp1
REAL(wp) :: zwy, zwy_ip1, zwy_jm1, zwy_ip1_jm1
#else
REAL(wp), DIMENSION(A2D(1)) :: zwx , zwy
REAL(wp), DIMENSION(A2D(1)) :: ztnw, ztne, ztsw, ztse
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
REAL(wp), DIMENSION(A2D(1)) :: zwz ! 3D workspace, jpkm1 -> jpkm1 -> avoid lbc_lnk on jpk that is not defined
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
#if defined key_qco || defined key_linssh
DO_2D( 1, 1, 1, 1 ) ! == reciprocal of e3 at F-point (key_qco)
z1_e3f(ji,jj) = 1._wp / e3f_vor(ji,jj,jk)
END_2D
#else
SELECT CASE( nn_e3f_typ ) ! == reciprocal of e3 at F-point
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_2D( 1, 1, 1, 1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ze3f = ( (e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk)) &
& + (e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk)) )
IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = 4._wp / ze3f
ELSE ; z1_e3f(ji,jj) = 0._wp
ENDIF
END_2D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_2D( 1, 1, 1, 1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ze3f = ( (e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk)) &
& + (e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk)) )
zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = zmsk / ze3f
ELSE ; z1_e3f(ji,jj) = 0._wp
ENDIF
END_2D
END SELECT
#endif
!
SELECT CASE( kvor ) !== vorticity considered ==!
!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ff_f(ji,jj) * z1_e3f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( e2v(ji+1,jj ) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji ,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)*z1_e3f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( ( pv(ji+1,jj,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 1, 1, 1, 1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj) = ( ff_f(ji,jj) + ( ( e2v(ji+1,jj ) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& - ( e1u(ji ,jj+1) * pu(ji,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * r1_e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( zwz(ji,jj) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
!
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 1, 0, 1 )
ztne(ji,jj) = zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1)
ztnw(ji,jj) = zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj )
ztse(ji,jj) = zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1)
ztsw(ji,jj) = zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj )
END_2D
!
DO_2D( 0, 0, 0, 0 )
zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) &
& + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) )
zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) &
& + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zua
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zva
END_2D
END DO
! ! ===============
! ! End of slab
! ! ===============
END SUBROUTINE vor_een
SUBROUTINE vor_een_hls1( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_een ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Arakawa and Lamb (1980) flux form formulation : conserves
!! both the horizontal kinetic energy and the potential enstrophy
!! when horizontal divergence is zero (see the NEMO documentation)
!! Add this trend to the general momentum trend (pu_rhs,pv_rhs).
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!
!! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zua, zva ! local scalars