Newer
Older
REAL(wp) :: zmsk, ze3f ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: z1_e3f
#if defined key_loop_fusion
REAL(wp) :: ztne, ztnw, ztnw_ip1, ztse, ztse_jp1, ztsw_jp1, ztsw_ip1
REAL(wp) :: zwx, zwx_im1, zwx_jp1, zwx_im1_jp1
REAL(wp) :: zwy, zwy_ip1, zwy_jm1, zwy_ip1_jm1
#else
REAL(wp), DIMENSION(A2D(1)) :: zwx , zwy
REAL(wp), DIMENSION(A2D(1)) :: ztnw, ztne, ztsw, ztse
#endif
REAL(wp), DIMENSION(A2D(1),jpkm1) :: zwz ! 3D workspace, jpkm1 -> jpkm1 -> avoid lbc_lnk on jpk that is not defined
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_een : vorticity term: energy and enstrophy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
#if defined key_qco || defined key_linssh
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! == reciprocal of e3 at F-point (key_qco)
z1_e3f(ji,jj) = 1._wp / e3f_vor(ji,jj,jk)
END_2D
#else
SELECT CASE( nn_e3f_typ ) ! == reciprocal of e3 at F-point
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ze3f = ( (e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk)) &
& + (e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk)) )
IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = 4._wp / ze3f
ELSE ; z1_e3f(ji,jj) = 0._wp
ENDIF
END_2D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ze3f = ( (e3t(ji ,jj+1,jk,Kmm)*tmask(ji ,jj+1,jk) &
& + e3t(ji+1,jj+1,jk,Kmm)*tmask(ji+1,jj+1,jk)) &
& + (e3t(ji ,jj ,jk,Kmm)*tmask(ji ,jj ,jk) &
& + e3t(ji+1,jj ,jk,Kmm)*tmask(ji+1,jj ,jk)) )
zmsk = ( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) )
IF( ze3f /= 0._wp ) THEN ; z1_e3f(ji,jj) = zmsk / ze3f
ELSE ; z1_e3f(ji,jj) = 0._wp
ENDIF
END_2D
END SELECT
#endif
!
SELECT CASE( kvor ) !== vorticity considered ==!
!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ff_f(ji,jj) * z1_e3f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( e2v(ji+1,jj ) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& - e1u(ji ,jj+1) * pu(ji,jj+1,jk) + e1u(ji,jj) * pu(ji,jj,jk) ) * r1_e1e2f(ji,jj)*z1_e3f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = zwz(ji,jj,jk) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( ( pv(ji+1,jj,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj,jk) = ( ff_f(ji,jj) + ( ( e2v(ji+1,jj ) * pv(ji+1,jj,jk) - e2v(ji,jj) * pv(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& - ( e1u(ji ,jj+1) * pu(ji,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * r1_e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( zwz(ji,jj,jk) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj) ) * z1_e3f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
! ! ===============
END DO ! End of slab
! ! ===============
!
IF (nn_hls==1) CALL lbc_lnk( 'dynvor', zwz, 'F', 1.0_wp )
!
! ! ===============
! ! Horizontal slab
! ! ===============
#if defined key_loop_fusion
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
! !== horizontal fluxes ==!
zwx = e2u(ji ,jj ) * e3u(ji ,jj ,jk,Kmm) * pu(ji ,jj ,jk)
zwx_im1 = e2u(ji-1,jj ) * e3u(ji-1,jj ,jk,Kmm) * pu(ji-1,jj ,jk)
zwx_jp1 = e2u(ji ,jj+1) * e3u(ji ,jj+1,jk,Kmm) * pu(ji ,jj+1,jk)
zwx_im1_jp1 = e2u(ji-1,jj+1) * e3u(ji-1,jj+1,jk,Kmm) * pu(ji-1,jj+1,jk)
zwy = e1v(ji ,jj ) * e3v(ji ,jj ,jk,Kmm) * pv(ji ,jj ,jk)
zwy_ip1 = e1v(ji+1,jj ) * e3v(ji+1,jj ,jk,Kmm) * pv(ji+1,jj ,jk)
zwy_jm1 = e1v(ji ,jj-1) * e3v(ji ,jj-1,jk,Kmm) * pv(ji ,jj-1,jk)
zwy_ip1_jm1 = e1v(ji+1,jj-1) * e3v(ji+1,jj-1,jk,Kmm) * pv(ji+1,jj-1,jk)
! !== compute and add the vorticity term trend =!
ztne = zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk)
ztnw = zwz(ji-1,jj-1,jk) + zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk)
ztnw_ip1 = zwz(ji ,jj-1,jk) + zwz(ji ,jj ,jk) + zwz(ji+1,jj ,jk)
ztse = zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk) + zwz(ji-1,jj-1,jk)
ztse_jp1 = zwz(ji ,jj+1,jk) + zwz(ji ,jj ,jk) + zwz(ji-1,jj ,jk)
ztsw_jp1 = zwz(ji ,jj ,jk) + zwz(ji-1,jj ,jk) + zwz(ji-1,jj+1,jk)
ztsw_ip1 = zwz(ji+1,jj-1,jk) + zwz(ji ,jj-1,jk) + zwz(ji ,jj ,jk)
!
zua = + r1_12 * r1_e1u(ji,jj) * ( ztne * zwy + ztnw_ip1 * zwy_ip1 &
& + ztse * zwy_jm1 + ztsw_ip1 * zwy_ip1_jm1 )
zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw_jp1 * zwx_im1_jp1 + ztse_jp1 * zwx_jp1 &
& + ztnw * zwx_im1 + ztne * zwx )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zua
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zva
END_3D
#else
DO jk = 1, jpkm1
!
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 1, 0, 1 )
ztne(ji,jj) = zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk)
ztnw(ji,jj) = zwz(ji-1,jj-1,jk) + zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk)
ztse(ji,jj) = zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk) + zwz(ji-1,jj-1,jk)
ztsw(ji,jj) = zwz(ji ,jj-1,jk) + zwz(ji-1,jj-1,jk) + zwz(ji-1,jj ,jk)
END_2D
!
DO_2D( 0, 0, 0, 0 )
zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) &
& + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) )
zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) &
& + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zua
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zva
END_2D
END DO
#endif
! ! ===============
! ! End of slab
! ! ===============
END SUBROUTINE vor_een_hls1
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
SUBROUTINE vor_eeT( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_eeT ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Arakawa and Lamb (1980) vector form formulation using
!! a modified version of Arakawa and Lamb (1980) scheme (see vor_een).
!! The change consists in
!! Add this trend to the general momentum trend (pu_rhs,pv_rhs).
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!
!! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zua, zva ! local scalars
REAL(wp) :: zmsk, z1_e3t ! local scalars
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
REAL(wp), DIMENSION(A2D(1)) :: zwx , zwy
REAL(wp), DIMENSION(A2D(1)) :: ztnw, ztne, ztsw, ztse
REAL(wp), DIMENSION(A2D(1)) :: zwz ! 3D workspace, avoid lbc_lnk on jpk that is not defined
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_eeT : vorticity term: energy and enstrophy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
!
SELECT CASE( kvor ) !== vorticity considered ==!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ff_f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( 1, 1, 1, 1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj) = ( (e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk)) &
& - (e1u(ji ,jj+1) * pu(ji ,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk)) ) &
& * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = zwz(ji,jj) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( 1, 1, 1, 1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj) = ( ff_f(ji,jj) + ( (e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk)) &
& - (e1u(ji ,jj+1) * pu(ji ,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk)) ) &
& * r1_e1e2f(ji,jj) )
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ( zwz(ji,jj) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( 1, 1, 1, 1 )
zwz(ji,jj) = ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
!
!
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 1, 0, 1 )
z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm)
ztne(ji,jj) = ( zwz(ji-1,jj ) + zwz(ji ,jj ) + zwz(ji ,jj-1) ) * z1_e3t
ztnw(ji,jj) = ( zwz(ji-1,jj-1) + zwz(ji-1,jj ) + zwz(ji ,jj ) ) * z1_e3t
ztse(ji,jj) = ( zwz(ji ,jj ) + zwz(ji ,jj-1) + zwz(ji-1,jj-1) ) * z1_e3t
ztsw(ji,jj) = ( zwz(ji ,jj-1) + zwz(ji-1,jj-1) + zwz(ji-1,jj ) ) * z1_e3t
END_2D
!
DO_2D( 0, 0, 0, 0 )
zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) &
& + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) )
zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) &
& + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zua
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zva
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
END SUBROUTINE vor_eeT
SUBROUTINE vor_eeT_hls1( kt, Kmm, kvor, pu, pv, pu_rhs, pv_rhs )
!!----------------------------------------------------------------------
!! *** ROUTINE vor_eeT ***
!!
!! ** Purpose : Compute the now total vorticity trend and add it to
!! the general trend of the momentum equation.
!!
!! ** Method : Trend evaluated using now fields (centered in time)
!! and the Arakawa and Lamb (1980) vector form formulation using
!! a modified version of Arakawa and Lamb (1980) scheme (see vor_een).
!! The change consists in
!! Add this trend to the general momentum trend (pu_rhs,pv_rhs).
!!
!! ** Action : - Update (pu_rhs,pv_rhs) with the now vorticity term trend
!!
!! References : Arakawa and Lamb 1980, Mon. Wea. Rev., 109, 18-36
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: kvor ! total, planetary, relative, or metric
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu, pv ! now velocities
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: pu_rhs, pv_rhs ! total v-trend
!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ierr ! local integer
REAL(wp) :: zua, zva ! local scalars
REAL(wp) :: zmsk, z1_e3t ! local scalars
REAL(wp), DIMENSION(A2D(1)) :: zwx , zwy
REAL(wp), DIMENSION(A2D(1)) :: ztnw, ztne, ztsw, ztse
REAL(wp), DIMENSION(A2D(1),jpkm1) :: zwz ! 3D workspace, avoid lbc_lnk on jpk that is not defined
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:vor_eeT : vorticity term: energy and enstrophy conserving scheme'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
ENDIF
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
!
SELECT CASE( kvor ) !== vorticity considered ==!
CASE ( np_COR ) !* Coriolis (planetary vorticity)
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ff_f(ji,jj)
END_2D
CASE ( np_RVO ) !* relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj,jk) = ( (e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk)) &
& - (e1u(ji ,jj+1) * pu(ji ,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk)) ) &
& * r1_e1e2f(ji,jj)
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = zwz(ji,jj,jk) * fmask(ji,jj,jk)
END_2D
ENDIF
CASE ( np_MET ) !* metric term
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE ( np_CRV ) !* Coriolis + relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zwz(ji,jj,jk) = ( ff_f(ji,jj) + ( (e2v(ji+1,jj ) * pv(ji+1,jj ,jk) - e2v(ji,jj) * pv(ji,jj,jk)) &
& - (e1u(ji ,jj+1) * pu(ji ,jj+1,jk) - e1u(ji,jj) * pu(ji,jj,jk)) ) &
& * r1_e1e2f(ji,jj) )
END_2D
IF( ln_dynvor_msk ) THEN ! mask the relative vorticity
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ( zwz(ji,jj,jk) - ff_f(ji,jj) ) * fmask(ji,jj,jk) + ff_f(ji,jj)
END_2D
ENDIF
CASE ( np_CME ) !* Coriolis + metric
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zwz(ji,jj,jk) = ff_f(ji,jj) + ( pv(ji+1,jj ,jk) + pv(ji,jj,jk) ) * di_e2v_2e1e2f(ji,jj) &
& - ( pu(ji ,jj+1,jk) + pu(ji,jj,jk) ) * dj_e1u_2e1e2f(ji,jj)
END_2D
CASE DEFAULT ! error
CALL ctl_stop('STOP','dyn_vor: wrong value for kvor' )
END SELECT
!
! ! ===============
END DO ! End of slab
! ! ===============
!
IF (nn_hls==1) CALL lbc_lnk( 'dynvor', zwz, 'F', 1.0_wp )
!
! ! ===============
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
!
! !== horizontal fluxes ==!
DO_2D( 1, 1, 1, 1 )
zwx(ji,jj) = e2u(ji,jj) * e3u(ji,jj,jk,Kmm) * pu(ji,jj,jk)
zwy(ji,jj) = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) * pv(ji,jj,jk)
END_2D
!
! !== compute and add the vorticity term trend =!
DO_2D( 0, 1, 0, 1 )
z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm)
ztne(ji,jj) = ( zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk) ) * z1_e3t
ztnw(ji,jj) = ( zwz(ji-1,jj-1,jk) + zwz(ji-1,jj ,jk) + zwz(ji ,jj ,jk) ) * z1_e3t
ztse(ji,jj) = ( zwz(ji ,jj ,jk) + zwz(ji ,jj-1,jk) + zwz(ji-1,jj-1,jk) ) * z1_e3t
ztsw(ji,jj) = ( zwz(ji ,jj-1,jk) + zwz(ji-1,jj-1,jk) + zwz(ji-1,jj ,jk) ) * z1_e3t
END_2D
!
DO_2D( 0, 0, 0, 0 )
zua = + r1_12 * r1_e1u(ji,jj) * ( ztne(ji,jj ) * zwy(ji ,jj ) + ztnw(ji+1,jj) * zwy(ji+1,jj ) &
& + ztse(ji,jj ) * zwy(ji ,jj-1) + ztsw(ji+1,jj) * zwy(ji+1,jj-1) )
zva = - r1_12 * r1_e2v(ji,jj) * ( ztsw(ji,jj+1) * zwx(ji-1,jj+1) + ztse(ji,jj+1) * zwx(ji ,jj+1) &
& + ztnw(ji,jj ) * zwx(ji-1,jj ) + ztne(ji,jj ) * zwx(ji ,jj ) )
pu_rhs(ji,jj,jk) = pu_rhs(ji,jj,jk) + zua
pv_rhs(ji,jj,jk) = pv_rhs(ji,jj,jk) + zva
END_2D
! ! ===============
END DO ! End of slab
! ! ===============
END SUBROUTINE vor_eeT_hls1
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
SUBROUTINE dyn_vor_init
!!---------------------------------------------------------------------
!! *** ROUTINE dyn_vor_init ***
!!
!! ** Purpose : Control the consistency between cpp options for
!! tracer advection schemes
!!----------------------------------------------------------------------
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ioptio, ios ! local integer
REAL(wp) :: zmsk ! local scalars
!!
NAMELIST/namdyn_vor/ ln_dynvor_ens, ln_dynvor_ene, ln_dynvor_enT, ln_dynvor_eeT, &
& ln_dynvor_een, nn_e3f_typ , ln_dynvor_mix, ln_dynvor_msk
!!----------------------------------------------------------------------
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'dyn_vor_init : vorticity term : read namelist and control the consistency'
WRITE(numout,*) '~~~~~~~~~~~~'
ENDIF
!
READ ( numnam_ref, namdyn_vor, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_vor in reference namelist' )
READ ( numnam_cfg, namdyn_vor, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdyn_vor in configuration namelist' )
IF(lwm) WRITE ( numond, namdyn_vor )
!
IF(lwp) THEN ! Namelist print
WRITE(numout,*) ' Namelist namdyn_vor : choice of the vorticity term scheme'
WRITE(numout,*) ' enstrophy conserving scheme ln_dynvor_ens = ', ln_dynvor_ens
WRITE(numout,*) ' f-point energy conserving scheme ln_dynvor_ene = ', ln_dynvor_ene
WRITE(numout,*) ' t-point energy conserving scheme ln_dynvor_enT = ', ln_dynvor_enT
WRITE(numout,*) ' energy conserving scheme (een using e3t) ln_dynvor_eeT = ', ln_dynvor_eeT
WRITE(numout,*) ' enstrophy and energy conserving scheme ln_dynvor_een = ', ln_dynvor_een
WRITE(numout,*) ' e3f = averaging /4 (=0) or /sum(tmask) (=1) nn_e3f_typ = ', nn_e3f_typ
WRITE(numout,*) ' mixed enstrophy/energy conserving scheme ln_dynvor_mix = ', ln_dynvor_mix
WRITE(numout,*) ' masked (=T) or unmasked(=F) vorticity ln_dynvor_msk = ', ln_dynvor_msk
ENDIF
!!gm this should be removed when choosing a unique strategy for fmask at the coast
! If energy, enstrophy or mixed advection of momentum in vector form change the value for masks
! at angles with three ocean points and one land point
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' change fmask value in the angles (T) ln_vorlat = ', ln_vorlat
IF( ln_vorlat .AND. ( ln_dynvor_ene .OR. ln_dynvor_ens .OR. ln_dynvor_mix ) ) THEN
DO_3D( 1, 0, 1, 0, 1, jpk )
IF( tmask(ji,jj+1,jk) + tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) + tmask(ji+1,jj ,jk) == 3._wp ) fmask(ji,jj,jk) = 1._wp
END_3D
!
CALL lbc_lnk( 'dynvor', fmask, 'F', 1._wp ) ! Lateral boundary conditions on fmask
!
ENDIF
!!gm end
ioptio = 0 ! type of scheme for vorticity (set nvor_scheme)
IF( ln_dynvor_ens ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENS ; ENDIF
IF( ln_dynvor_ene ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENE ; ENDIF
IF( ln_dynvor_enT ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_ENT ; ENDIF
IF( ln_dynvor_eeT ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EET ; ENDIF
IF( ln_dynvor_een ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_EEN ; ENDIF
IF( ln_dynvor_mix ) THEN ; ioptio = ioptio + 1 ; nvor_scheme = np_MIX ; ENDIF
!
IF( ioptio /= 1 ) CALL ctl_stop( ' use ONE and ONLY one vorticity scheme' )
!
IF(lwp) WRITE(numout,*) ! type of calculated vorticity (set ncor, nrvm, ntot)
ncor = np_COR ! planetary vorticity
SELECT CASE( n_dynadv )
CASE( np_LIN_dyn )
IF(lwp) WRITE(numout,*) ' ==>>> linear dynamics : total vorticity = Coriolis'
nrvm = np_COR ! planetary vorticity
ntot = np_COR ! - -
CASE( np_VEC_c2 )
IF(lwp) WRITE(numout,*) ' ==>>> vector form dynamics : total vorticity = Coriolis + relative vorticity'
nrvm = np_RVO ! relative vorticity
ntot = np_CRV ! relative + planetary vorticity
CASE( np_FLX_c2 , np_FLX_ubs )
IF(lwp) WRITE(numout,*) ' ==>>> flux form dynamics : total vorticity = Coriolis + metric term'
nrvm = np_MET ! metric term
ntot = np_CME ! Coriolis + metric term
!
SELECT CASE( nvor_scheme ) ! pre-computed gradients for the metric term:
CASE( np_ENT ) !* T-point metric term : pre-compute di(e2u)/2 and dj(e1v)/2
ALLOCATE( di_e2u_2(jpi,jpj), dj_e1v_2(jpi,jpj) )
DO_2D( 0, 0, 0, 0 )
di_e2u_2(ji,jj) = ( e2u(ji,jj) - e2u(ji-1,jj ) ) * 0.5_wp
dj_e1v_2(ji,jj) = ( e1v(ji,jj) - e1v(ji ,jj-1) ) * 0.5_wp
END_2D
CALL lbc_lnk( 'dynvor', di_e2u_2, 'T', -1.0_wp , dj_e1v_2, 'T', -1.0_wp ) ! Lateral boundary conditions
!
CASE DEFAULT !* F-point metric term : pre-compute di(e2u)/(2*e1e2f) and dj(e1v)/(2*e1e2f)
ALLOCATE( di_e2v_2e1e2f(jpi,jpj), dj_e1u_2e1e2f(jpi,jpj) )
DO_2D( 0, 0, 0, 0 )
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
di_e2v_2e1e2f(ji,jj) = ( e2v(ji+1,jj ) - e2v(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj)
dj_e1u_2e1e2f(ji,jj) = ( e1u(ji ,jj+1) - e1u(ji,jj) ) * 0.5 * r1_e1e2f(ji,jj)
END_2D
CALL lbc_lnk( 'dynvor', di_e2v_2e1e2f, 'F', -1.0_wp , dj_e1u_2e1e2f, 'F', -1.0_wp ) ! Lateral boundary conditions
END SELECT
!
END SELECT
#if defined key_qco || defined key_linssh
SELECT CASE( nvor_scheme ) ! qco or linssh cases : pre-computed a specific e3f_0 for some vorticity schemes
CASE( np_ENS , np_ENE , np_EEN , np_MIX )
!
ALLOCATE( e3f_0vor(jpi,jpj,jpk) )
!
SELECT CASE( nn_e3f_typ )
CASE ( 0 ) ! original formulation (masked averaging of e3t divided by 4)
DO_3D( 0, 0, 0, 0, 1, jpk )
e3f_0vor(ji,jj,jk) = ( e3t_0(ji ,jj+1,jk)*tmask(ji ,jj+1,jk) &
& + e3t_0(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) &
& + e3t_0(ji ,jj ,jk)*tmask(ji ,jj ,jk) &
& + e3t_0(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) * 0.25_wp
END_3D
CASE ( 1 ) ! new formulation (masked averaging of e3t divided by the sum of mask)
DO_3D( 0, 0, 0, 0, 1, jpk )
zmsk = (tmask(ji,jj+1,jk) +tmask(ji+1,jj+1,jk) &
& + tmask(ji,jj ,jk) +tmask(ji+1,jj ,jk) )
!
IF( zmsk /= 0._wp ) THEN
e3f_0vor(ji,jj,jk) = ( e3t_0(ji ,jj+1,jk)*tmask(ji ,jj+1,jk) &
& + e3t_0(ji+1,jj+1,jk)*tmask(ji+1,jj+1,jk) &
& + e3t_0(ji ,jj ,jk)*tmask(ji ,jj ,jk) &
& + e3t_0(ji+1,jj ,jk)*tmask(ji+1,jj ,jk) ) / zmsk
ELSE ; e3f_0vor(ji,jj,jk) = 0._wp
ENDIF
END_3D
END SELECT
!
CALL lbc_lnk( 'dynvor', e3f_0vor, 'F', 1._wp )
! ! insure e3f_0vor /= 0
WHERE( e3f_0vor(:,:,:) == 0._wp ) e3f_0vor(:,:,:) = e3f_0(:,:,:)
!
END SELECT
!
#endif
IF(lwp) THEN ! Print the choice
WRITE(numout,*)
SELECT CASE( nvor_scheme )
CASE( np_ENS ) ; WRITE(numout,*) ' ==>>> enstrophy conserving scheme (ENS)'
CASE( np_ENE ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at F-points) (ENE)'
CASE( np_ENT ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (Coriolis at T-points) (ENT)'
IF( ln_dynadv_vec ) CALL ctl_warn('dyn_vor_init: ENT scheme may not work in vector form')
CASE( np_EET ) ; WRITE(numout,*) ' ==>>> energy conserving scheme (EEN scheme using e3t) (EET)'
CASE( np_EEN ) ; WRITE(numout,*) ' ==>>> energy and enstrophy conserving scheme (EEN)'
CASE( np_MIX ) ; WRITE(numout,*) ' ==>>> mixed enstrophy/energy conserving scheme (MIX)'
END SELECT
ENDIF
!
END SUBROUTINE dyn_vor_init
!!==============================================================================
END MODULE dynvor