Newer
Older
MODULE zdfosm
!!======================================================================
!! *** MODULE zdfosm ***
!! Ocean physics: vertical mixing coefficient compute from the OSMOSIS
!! turbulent closure parameterization
!!=====================================================================
!! History : NEMO 4.0 ! A. Grant, G. Nurser
!! 15/03/2017 Changed calculation of pycnocline thickness in unstable conditions and stable conditions AG
!! 15/03/2017 Calculation of pycnocline gradients for stable conditions changed. Pycnocline gradients now depend on stability of the OSBL. A.G
!! 06/06/2017 (1) Checks on sign of buoyancy jump in calculation of OSBL depth. A.G.
!! (2) Removed variable zbrad0, zbradh and zbradav since they are not used.
!! (3) Approximate treatment for shear turbulence.
!! Minimum values for zustar and zustke.
!! Add velocity scale, zvstr, that tends to zustar for large Langmuir numbers.
!! Limit maximum value for Langmuir number.
!! Use zvstr in definition of stability parameter zhol.
!! (4) Modified parametrization of entrainment flux, changing original coefficient 0.0485 for Langmuir contribution to 0.135 * zla
!! (5) For stable boundary layer add factor that depends on length of timestep to 'slow' collapse and growth. Make sure buoyancy jump not negative.
!! (6) For unstable conditions when growth is over multiple levels, limit change to maximum of one level per cycle through loop.
!! (7) Change lower limits for loops that calculate OSBL averages from 1 to 2. Large gradients between levels 1 and 2 can cause problems.
!! (8) Change upper limits from ibld-1 to ibld.
!! (9) Calculation of pycnocline thickness in unstable conditions. Check added to ensure that buoyancy jump is positive before calculating Ri.
!! (10) Thickness of interface layer at base of the stable OSBL set by Richardson number. Gives continuity in transition from unstable OSBL.
!! (11) Checks that buoyancy jump is poitive when calculating pycnocline profiles.
!! (12) Replace zwstrl with zvstr in calculation of eddy viscosity.
!! 27/09/2017 (13) Calculate Stokes drift and Stokes penetration depth from wave information
!! (14) Buoyancy flux due to entrainment changed to include contribution from shear turbulence.
!! 28/09/2017 (15) Calculation of Stokes drift moved into separate do-loops to allow for different options for the determining the Stokes drift to be added.
!! (16) Calculation of Stokes drift from windspeed for PM spectrum (for testing, commented out)
!! (17) Modification to Langmuir velocity scale to include effects due to the Stokes penetration depth (for testing, commented out)
!! ??/??/2018 (18) Revision to code structure, selected using fortran macro. Inline code moved into subroutines. Changes to physics made,
!! (a) Pycnocline temperature and salinity profies changed for unstable layers
!! (b) The stable OSBL depth parametrization changed.
!! 16/05/2019 (19) Fox-Kemper parametrization of restratification through mixed layer eddies added to revised code.
!! 23/05/19 (20) Remove old code excluded by fortran macro along with the fortran macro that is not needed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
!! 4.2 ! 2021-05 (S. Mueller) Efficiency improvements, source-code clarity enhancements, and adaptation to tiling
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! 'ln_zdfosm' OSMOSIS scheme
!!----------------------------------------------------------------------
!! zdf_osm : update momentum and tracer Kz from osm scheme
!! zdf_osm_vertical_average : compute vertical averages over boundary layers
!! zdf_osm_velocity_rotation : rotate velocity components
!! zdf_osm_velocity_rotation_2d : rotation of 2d fields
!! zdf_osm_velocity_rotation_3d : rotation of 3d fields
!! zdf_osm_osbl_state : determine the state of the OSBL
!! zdf_osm_external_gradients : calculate gradients below the OSBL
!! zdf_osm_calculate_dhdt : calculate rate of change of hbl
!! zdf_osm_timestep_hbl : hbl timestep
!! zdf_osm_pycnocline_thickness : calculate thickness of pycnocline
!! zdf_osm_diffusivity_viscosity : compute eddy diffusivity and viscosity profiles
!! zdf_osm_fgr_terms : compute flux-gradient relationship terms
!! zdf_osm_pycnocline_buoyancy_profiles : calculate pycnocline buoyancy profiles
!! zdf_osm_zmld_horizontal_gradients : calculate horizontal buoyancy gradients for use with Fox-Kemper parametrization
!! zdf_osm_osbl_state_fk : determine state of OSBL and MLE layers
!! zdf_osm_mle_parameters : timestep MLE depth and calculate MLE fluxes
!! zdf_osm_init : initialization, namelist read, and parameters control
!! zdf_osm_alloc : memory allocation
!! osm_rst : read (or initialize) and write osmosis restart fields
!! tra_osm : compute and add to the T & S trend the non-local flux
!! trc_osm : compute and add to the passive tracer trend the non-local flux (TBD)
!! dyn_osm : compute and add to u & v trensd the non-local flux
!! zdf_osm_iomput : iom_put wrapper that accepts arrays without halo
!! zdf_osm_iomput_2d : iom_put wrapper for 2D fields
!! zdf_osm_iomput_3d : iom_put wrapper for 3D fields
!!----------------------------------------------------------------------
USE oce ! Ocean dynamics and active tracers
! ! Uses ww from previous time step (which is now wb) to calculate hbl
USE dom_oce ! Ocean space and time domain
USE zdf_oce ! Ocean vertical physics
USE sbc_oce ! Surface boundary condition: ocean
USE sbcwave ! Surface wave parameters
USE phycst ! Physical constants
USE eosbn2 ! Equation of state
USE traqsr ! Details of solar radiation absorption
USE zdfdrg, ONLY : rCdU_bot ! Bottom friction velocity
USE zdfddm ! Double diffusion mixing (avs array)
USE iom ! I/O library
USE lib_mpp ! MPP library
USE trd_oce ! Ocean trends definition
USE trdtra ! Tracers trends
USE in_out_manager ! I/O manager
USE lbclnk ! Ocean lateral boundary conditions (or mpp link)
USE prtctl ! Print control
USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
IMPLICIT NONE
PRIVATE
! Public subroutines
PUBLIC zdf_osm ! Routine called by step.F90
PUBLIC zdf_osm_init ! Routine called by nemogcm.F90
PUBLIC osm_rst ! Routine called by step.F90
PUBLIC tra_osm ! Routine called by step.F90
PUBLIC trc_osm ! Routine called by trcstp.F90
PUBLIC dyn_osm ! Routine called by step.F90
! Public variables
LOGICAL, PUBLIC :: ln_osm_mle !: Flag to activate the Mixed Layer Eddy (MLE)
! ! parameterisation, needed by tra_mle_init in
! ! tramle.F90
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamu !: Non-local u-momentum flux
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamv !: Non-local v-momentum flux
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamt !: Non-local temperature flux (gamma/<ws>o)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghams !: Non-local salinity flux (gamma/<ws>o)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbl !: Boundary layer depth
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hml !: ML depth
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmle !: Depth of layer affexted by mixed layer eddies in Fox-Kemper parametrization
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dbdx_mle !: Zonal buoyancy gradient in ML
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dbdy_mle !: Meridional buoyancy gradient in ML
INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mld_prof !: Level of base of MLE layer
INTERFACE zdf_osm_velocity_rotation
!!---------------------------------------------------------------------
!! *** INTERFACE zdf_velocity_rotation ***
!!---------------------------------------------------------------------
MODULE PROCEDURE zdf_osm_velocity_rotation_2d
MODULE PROCEDURE zdf_osm_velocity_rotation_3d
END INTERFACE
!
INTERFACE zdf_osm_iomput
!!---------------------------------------------------------------------
!! *** INTERFACE zdf_osm_iomput ***
!!---------------------------------------------------------------------
MODULE PROCEDURE zdf_osm_iomput_2d
MODULE PROCEDURE zdf_osm_iomput_3d
END INTERFACE
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: etmean ! Averaging operator for avt
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dh ! Depth of pycnocline
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: r1_ft ! Inverse of the modified Coriolis parameter at t-pts
! Layer indices
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nbld ! Level of boundary layer base
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nmld ! Level of mixed-layer depth (pycnocline top)
! Layer type
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: n_ddh ! Type of shear layer
! ! n_ddh=0: active shear layer
! ! n_ddh=1: shear layer not active
! ! n_ddh=2: shear production low
! Layer flags
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_conv ! Unstable/stable bl
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_shear ! Shear layers
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_coup ! Coupling to bottom
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_pyc ! OSBL pycnocline present
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_flux ! Surface flux extends below OSBL into MLE layer
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_mle ! MLE layer increases in hickness.
! Scales
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swth0 ! Surface heat flux (Kinematic)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sws0 ! Surface freshwater flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swb0 ! Surface buoyancy flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: suw0 ! Surface u-momentum flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sustar ! Friction velocity
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: scos_wind ! Cos angle of surface stress
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ssin_wind ! Sin angle of surface stress
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swthav ! Heat flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swsav ! Freshwater flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swbav ! Buoyancy flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sustke ! Surface Stokes drift
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dstokes ! Penetration depth of the Stokes drift
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swstrl ! Langmuir velocity scale
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swstrc ! Convective velocity scale
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sla ! Trubulent Langmuir number
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: svstr ! Velocity scale that tends to sustar for large Langmuir number
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: shol ! Stability parameter for boundary layer
! Layer averages: BL
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_bl ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_bl ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_bl ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_bl ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_bl ! Buoyancy average
! Difference between layer average and parameter at the base of the layer: BL
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dt_bl ! Temperature difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_ds_bl ! Salinity difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_du_bl ! Velocity difference (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dv_bl ! Velocity difference (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_db_bl ! Buoyancy difference
! Layer averages: ML
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_ml ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_ml ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_ml ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_ml ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_ml ! Buoyancy average
! Difference between layer average and parameter at the base of the layer: ML
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dt_ml ! Temperature difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_ds_ml ! Salinity difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_du_ml ! Velocity difference (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dv_ml ! Velocity difference (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_db_ml ! Buoyancy difference
! Layer averages: MLE
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_mle ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_mle ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_mle ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_mle ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_mle ! Buoyancy average
! Diagnostic output
REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:) :: osmdia2d ! Auxiliary array for diagnostic output
REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: osmdia3d ! Auxiliary array for diagnostic output
LOGICAL :: ln_dia_pyc_scl = .FALSE. ! Output of pycnocline scalar-gradient profiles
LOGICAL :: ln_dia_pyc_shr = .FALSE. ! Output of pycnocline velocity-shear profiles
! !!* namelist namzdf_osm *
LOGICAL :: ln_use_osm_la ! Use namelist rn_osm_la
REAL(wp) :: rn_osm_la ! Turbulent Langmuir number
REAL(wp) :: rn_osm_dstokes ! Depth scale of Stokes drift
REAL(wp) :: rn_zdfosm_adjust_sd = 1.0_wp ! Factor to reduce Stokes drift by
REAL(wp) :: rn_osm_hblfrac = 0.1_wp ! For nn_osm_wave = 3/4 specify fraction in top of hbl
LOGICAL :: ln_zdfosm_ice_shelter ! Flag to activate ice sheltering
REAL(wp) :: rn_osm_hbl0 = 10.0_wp ! Initial value of hbl for 1D runs
INTEGER :: nn_ave ! = 0/1 flag for horizontal average on avt
INTEGER :: nn_osm_wave = 0 ! = 0/1/2 flag for getting stokes drift from La# / PM wind-waves/Inputs into
! ! sbcwave
INTEGER :: nn_osm_SD_reduce ! = 0/1/2 flag for getting effective stokes drift from surface value
LOGICAL :: ln_dia_osm ! Use namelist rn_osm_la
LOGICAL :: ln_kpprimix = .TRUE. ! Shear instability mixing
REAL(wp) :: rn_riinfty = 0.7_wp ! Local Richardson Number limit for shear instability
REAL(wp) :: rn_difri = 0.005_wp ! Maximum shear mixing at Rig = 0 (m2/s)
LOGICAL :: ln_convmix = .TRUE. ! Convective instability mixing
REAL(wp) :: rn_difconv = 1.0_wp ! Diffusivity when unstable below BL (m2/s)
! OSMOSIS mixed layer eddy parametrization constants
INTEGER :: nn_osm_mle ! = 0/1 flag for horizontal average on avt
REAL(wp) :: rn_osm_mle_ce ! MLE coefficient
! Parameters used in nn_osm_mle = 0 case
REAL(wp) :: rn_osm_mle_lf ! Typical scale of mixed layer front
REAL(wp) :: rn_osm_mle_time ! Time scale for mixing momentum across the mixed layer
! Parameters used in nn_osm_mle = 1 case
REAL(wp) :: rn_osm_mle_lat ! Reference latitude for a 5 km scale of ML front
LOGICAL :: ln_osm_hmle_limit ! If true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
REAL(wp) :: rn_osm_hmle_limit ! If ln_osm_hmle_limit true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
REAL(wp) :: rn_osm_mle_rho_c ! Density criterion for definition of MLD used by FK
REAL(wp) :: rb_c ! ML buoyancy criteria = g rho_c /rho0 where rho_c is defined in zdfmld
REAL(wp) :: rc_f ! MLE coefficient (= rn_ce / (5 km * fo) ) in nn_osm_mle=1 case
REAL(wp) :: rn_osm_mle_thresh ! Threshold buoyancy for deepening of MLE layer below OSBL base
REAL(wp) :: rn_osm_bl_thresh ! Threshold buoyancy for deepening of OSBL base
REAL(wp) :: rn_osm_mle_tau ! Adjustment timescale for MLE
! General constants
REAL(wp) :: epsln = 1.0e-20_wp ! A small positive number to ensure no div by zero
REAL(wp) :: depth_tol = 1.0e-6_wp ! A small-ish positive number to give a hbl slightly shallower than gdepw
REAL(wp) :: pthird = 1.0_wp/3.0_wp ! 1/3
REAL(wp) :: p2third = 2.0_wp/3.0_wp ! 2/3
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: zdfosm.F90 14921 2021-05-28 12:19:26Z smueller $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION zdf_osm_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION zdf_osm_alloc ***
!!----------------------------------------------------------------------
INTEGER :: ierr
!!----------------------------------------------------------------------
!
zdf_osm_alloc = 0
!
ALLOCATE( ghamu(jpi,jpj,jpk), ghamv(jpi,jpj,jpk), ghamt(jpi,jpj,jpk), ghams(jpi,jpj,jpk), hbl(jpi,jpj), hml(jpi,jpj), &
& hmle(jpi,jpj), dbdx_mle(jpi,jpj), dbdy_mle(jpi,jpj), mld_prof(jpi,jpj), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( etmean(A2D(nn_hls-1),jpk), dh(jpi,jpj), r1_ft(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( nbld(jpi,jpj), nmld(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( n_ddh(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( l_conv(A2D(nn_hls-1)), l_shear(A2D(nn_hls-1)), l_coup(A2D(nn_hls-1)), l_pyc(A2D(nn_hls-1)), &
& l_flux(A2D(nn_hls-1)), l_mle(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( swth0(A2D(nn_hls-1)), sws0(A2D(nn_hls-1)), swb0(A2D(nn_hls-1)), suw0(A2D(nn_hls-1)), &
& sustar(A2D(nn_hls-1)), scos_wind(A2D(nn_hls-1)), ssin_wind(A2D(nn_hls-1)), swthav(A2D(nn_hls-1)), &
& swsav(A2D(nn_hls-1)), swbav(A2D(nn_hls-1)), sustke(A2D(nn_hls-1)), dstokes(A2D(nn_hls-1)), &
& swstrl(A2D(nn_hls-1)), swstrc(A2D(nn_hls-1)), sla(A2D(nn_hls-1)), svstr(A2D(nn_hls-1)), &
& shol(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_bl(jpi,jpj), av_s_bl(jpi,jpj), av_u_bl(jpi,jpj), av_v_bl(jpi,jpj), &
& av_b_bl(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_dt_bl(jpi,jpj), av_ds_bl(jpi,jpj), av_du_bl(jpi,jpj), av_dv_bl(jpi,jpj), &
& av_db_bl(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_ml(jpi,jpj), av_s_ml(jpi,jpj), av_u_ml(jpi,jpj), av_v_ml(jpi,jpj), &
& av_b_ml(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_dt_ml(jpi,jpj), av_ds_ml(jpi,jpj), av_du_ml(jpi,jpj), av_dv_ml(jpi,jpj), &
& av_db_ml(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_mle(jpi,jpj), av_s_mle(jpi,jpj), av_u_mle(jpi,jpj), av_v_mle(jpi,jpj), &
& av_b_mle(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
IF ( ln_dia_osm ) THEN
ALLOCATE( osmdia2d(jpi,jpj), osmdia3d(jpi,jpj,jpk), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
END IF
!
CALL mpp_sum ( 'zdfosm', zdf_osm_alloc )
IF( zdf_osm_alloc /= 0 ) CALL ctl_warn( 'zdf_osm_alloc: failed to allocate zdf_osm arrays' )
!
END FUNCTION zdf_osm_alloc
SUBROUTINE zdf_osm( kt, Kbb, Kmm, Krhs, p_avm, &
& p_avt )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm ***
!!
!! ** Purpose : Compute the vertical eddy viscosity and diffusivity
!! coefficients and non local mixing using the OSMOSIS scheme
!!
!! ** Method : The boundary layer depth hosm is diagnosed at tracer points
!! from profiles of buoyancy, and shear, and the surface forcing.
!! Above hbl (sigma=-z/hbl <1) the mixing coefficients are computed from
!!
!! Kx = hosm Wx(sigma) G(sigma)
!!
!! and the non local term ghamt = Cs / Ws(sigma) / hosm
!! Below hosm the coefficients are the sum of mixing due to internal waves
!! shear instability and double diffusion.
!!
!! -1- Compute the now interior vertical mixing coefficients at all depths.
!! -2- Diagnose the boundary layer depth.
!! -3- Compute the now boundary layer vertical mixing coefficients.
!! -4- Compute the now vertical eddy vicosity and diffusivity.
!! -5- Smoothing
!!
!! N.B. The computation is done from jk=2 to jpkm1
!! Surface value of avt are set once a time to zero
!! in routine zdf_osm_init.
!!
!! ** Action : update the non-local terms ghamts
!! update avt (before vertical eddy coef.)
!!
!! References : Large W.G., Mc Williams J.C. and Doney S.C.
!! Reviews of Geophysics, 32, 4, November 1994
!! Comments in the code refer to this paper, particularly
!! the equation number. (LMD94, here after)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! Ocean time step
INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! Ocean time level indices
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: p_avm, p_avt ! Momentum and tracer Kz (w-points)
!!
INTEGER :: ji, jj, jk, jl, jm, jkflt ! Dummy loop indices
!!
REAL(wp) :: zthermal, zbeta
REAL(wp) :: zesh2, zri, zfri ! Interior Richardson mixing
!! Scales
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zrad0 ! Surface solar temperature flux (deg m/s)
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zradh ! Radiative flux at bl base (Buoyancy units)
REAL(wp) :: zradav ! Radiative flux, bl average (Buoyancy Units)
REAL(wp) :: zvw0 ! Surface v-momentum flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb0tot ! Total surface buoyancy flux including insolation
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_min
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_fk_b ! MLE buoyancy flux averaged over OSBL
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_fk ! Max MLE buoyancy flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdiff_mle ! Extra MLE vertical diff
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zvel_mle ! Velocity scale for dhdt with stable ML and FK
!! Mixed-layer variables
INTEGER, DIMENSION(A2D(nn_hls-1)) :: jk_nlev ! Number of levels
INTEGER, DIMENSION(A2D(nn_hls-1)) :: jk_ext ! Offset for external level
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhbl ! BL depth - grid
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhml ! ML depth - grid
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhmle ! MLE depth - grid
REAL(wp), DIMENSION(A2D(nn_hls)) :: zmld ! ML depth on grid
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdh ! Pycnocline depth - grid
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdhdt ! BL depth tendency
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdtdz_bl_ext, zdsdz_bl_ext ! External temperature/salinity gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls)) :: zdtdx, zdtdy, zdsdx, zdsdy ! Horizontal gradients for Fox-Kemper parametrization
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdbds_mle ! Magnitude of horizontal buoyancy gradient
!! Flux-gradient relationship variables
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zshear ! Shear production
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhbl_t ! Holds boundary layer depth updated by full timestep
!! For calculating Ri#-dependent mixing
REAL(wp), DIMENSION(A2D(nn_hls)) :: z2du ! u-shear^2
REAL(wp), DIMENSION(A2D(nn_hls)) :: z2dv ! v-shear^2
REAL(wp) :: zrimix ! Spatial form of ri#-induced diffusion
!! Temporary variables
REAL(wp) :: znd ! Temporary non-dimensional depth
REAL(wp) :: zz0, zz1, zfac
REAL(wp) :: zus_x, zus_y ! Temporary Stokes drift
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) :: zviscos ! Viscosity
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) :: zdiffut ! t-diffusivity
REAL(wp) :: zabsstke
REAL(wp) :: zsqrtpi, z_two_thirds, zthickness
REAL(wp) :: z2k_times_thickness, zsqrt_depth, zexp_depth, zf, zexperfc
!! For debugging
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
nmld(ji,jj) = 0
sustke(ji,jj) = pp_large
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END_2D
! Mixed layer
! No initialization of zhbl or zhml (or zdh?)
zhbl(:,:) = pp_large
zhml(:,:) = pp_large
zdh(:,:) = pp_large
!
IF ( ln_osm_mle ) THEN ! Only initialise arrays if needed
zdtdx(:,:) = pp_large ; zdtdy(:,:) = pp_large ; zdsdx(:,:) = pp_large
zdsdy(:,:) = pp_large
zwb_fk(:,:) = pp_large ; zvel_mle(:,:) = pp_large
zhmle(:,:) = pp_large ; zmld(:,:) = pp_large
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
dbdx_mle(ji,jj) = pp_large
dbdy_mle(ji,jj) = pp_large
END_2D
ENDIF
zhbl_t(:,:) = pp_large
!
zdiffut(:,:,:) = 0.0_wp
zviscos(:,:,:) = 0.0_wp
!
DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
ghamt(ji,jj,jk) = pp_large
ghams(ji,jj,jk) = pp_large
ghamu(ji,jj,jk) = pp_large
ghamv(ji,jj,jk) = pp_large
END_3D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
ghamt(ji,jj,jk) = 0.0_wp
ghams(ji,jj,jk) = 0.0_wp
ghamu(ji,jj,jk) = 0.0_wp
ghamv(ji,jj,jk) = 0.0_wp
END_3D
!
zdiff_mle(:,:) = 0.0_wp
!
! Ensure only positive hbl values are accessed when using extended halo
! (nn_hls==2)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
hbl(ji,jj) = MAX( hbl(ji,jj), epsln )
END_2D
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Calculate boundary layer scales
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
! Turbulent surface fluxes and fluxes averaged over depth of the OSBL
zz0 = rn_abs ! Assume two-band radiation model for depth of OSBL - surface equi-partition in 2-bands
zz1 = 1.0_wp - rn_abs
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zrad0(ji,jj) = qsr(ji,jj) * r1_rho0_rcp ! Surface downward irradiance (so always +ve)
zradh(ji,jj) = zrad0(ji,jj) * & ! Downwards irradiance at base of boundary layer
& ( zz0 * EXP( -1.0_wp * hbl(ji,jj) / rn_si0 ) + zz1 * EXP( -1.0_wp * hbl(ji,jj) / rn_si1 ) )
zradav = zrad0(ji,jj) * & ! Downwards irradiance averaged
& ( zz0 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si0 ) ) * rn_si0 + & ! over depth of the OSBL
& zz1 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si1 ) ) * rn_si1 ) / hbl(ji,jj)
swth0(ji,jj) = - qns(ji,jj) * r1_rho0_rcp * tmask(ji,jj,1) ! Upwards surface Temperature flux for non-local term
swthav(ji,jj) = 0.5_wp * swth0(ji,jj) - ( 0.5_wp * ( zrad0(ji,jj) + zradh(ji,jj) ) - & ! Turbulent heat flux averaged
& zradav ) ! over depth of OSBL
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sws0(ji,jj) = -1.0_wp * ( ( emp(ji,jj) - rnf(ji,jj) ) * ts(ji,jj,1,jp_sal,Kmm) + & ! Upwards surface salinity flux
& sfx(ji,jj) ) * r1_rho0 * tmask(ji,jj,1) ! for non-local term
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
swb0(ji,jj) = grav * zthermal * swth0(ji,jj) - grav * zbeta * sws0(ji,jj) ! Non radiative upwards surface buoyancy flux
zwb0tot(ji,jj) = swb0(ji,jj) - grav * zthermal * ( zrad0(ji,jj) - zradh(ji,jj) ) ! Total upwards surface buoyancy flux
swsav(ji,jj) = 0.5_wp * sws0(ji,jj) ! Turbulent salinity flux averaged over depth of the OBSL
swbav(ji,jj) = grav * zthermal * swthav(ji,jj) - & ! Turbulent buoyancy flux averaged over the depth of the
& grav * zbeta * swsav(ji,jj) ! OBSBL
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
suw0(ji,jj) = -0.5_wp * (utau(ji-1,jj) + utau(ji,jj)) * r1_rho0 * tmask(ji,jj,1) ! Surface upward velocity fluxes
zvw0 = -0.5_wp * (vtau(ji,jj-1) + vtau(ji,jj)) * r1_rho0 * tmask(ji,jj,1)
sustar(ji,jj) = MAX( SQRT( SQRT( suw0(ji,jj) * suw0(ji,jj) + zvw0 * zvw0 ) ), & ! Friction velocity (sustar), at
& 1e-8_wp ) ! T-point : LMD94 eq. 2
scos_wind(ji,jj) = -1.0_wp * suw0(ji,jj) / ( sustar(ji,jj) * sustar(ji,jj) )
ssin_wind(ji,jj) = -1.0_wp * zvw0 / ( sustar(ji,jj) * sustar(ji,jj) )
END_2D
! Calculate Stokes drift in direction of wind (sustke) and Stokes penetration depth (dstokes)
SELECT CASE (nn_osm_wave)
! Assume constant La#=0.3
CASE(0)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zus_x = scos_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
zus_y = ssin_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
! Linearly
sustke(ji,jj) = MAX( SQRT( zus_x * zus_x + zus_y * zus_y ), 1e-8_wp )
dstokes(ji,jj) = rn_osm_dstokes
END_2D
! Assume Pierson-Moskovitz wind-wave spectrum
CASE(1)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! Use wind speed wndm included in sbc_oce module
sustke(ji,jj) = MAX ( 0.016_wp * wndm(ji,jj), 1e-8_wp )
dstokes(ji,jj) = MAX ( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
END_2D
! Use ECMWF wave fields as output from SBCWAVE
CASE(2)
zfac = 2.0_wp * rpi / 16.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( hsw(ji,jj) > 1e-4_wp ) THEN
! Use wave fields
zabsstke = SQRT( ut0sd(ji,jj)**2 + vt0sd(ji,jj)**2 )
sustke(ji,jj) = MAX( ( scos_wind(ji,jj) * ut0sd(ji,jj) + ssin_wind(ji,jj) * vt0sd(ji,jj) ), 1e-8_wp )
dstokes(ji,jj) = MAX( zfac * hsw(ji,jj) * hsw(ji,jj) / ( MAX( zabsstke * wmp(ji,jj), 1e-7 ) ), 5e-1_wp )
ELSE
! Assume masking issue (e.g. ice in ECMWF reanalysis but not in model run)
! .. so default to Pierson-Moskowitz
sustke(ji,jj) = MAX( 0.016_wp * wndm(ji,jj), 1e-8_wp )
dstokes(ji,jj) = MAX( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
END IF
END_2D
END SELECT
!
IF (ln_zdfosm_ice_shelter) THEN
! Reduce both Stokes drift and its depth scale by ocean fraction to represent sheltering by ice
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sustke(ji,jj) = sustke(ji,jj) * ( 1.0_wp - fr_i(ji,jj) )
dstokes(ji,jj) = dstokes(ji,jj) * ( 1.0_wp - fr_i(ji,jj) )
END_2D
END IF
!
SELECT CASE (nn_osm_SD_reduce)
! Reduce surface Stokes drift by a constant factor or following Breivik (2016) + van Roekel (2012) or Grant (2020).
CASE(0)
! The Langmur number from the ECMWF model (or from PM) appears to give La<0.3 for wind-driven seas.
! The coefficient rn_zdfosm_adjust_sd = 0.8 gives La=0.3 in this situation.
! It could represent the effects of the spread of wave directions around the mean wind. The effect of this adjustment needs to be tested.
IF(nn_osm_wave > 0) THEN
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sustke(ji,jj) = rn_zdfosm_adjust_sd * sustke(ji,jj)
END_2D
END IF
CASE(1)
! Van Roekel (2012): consider average SD over top 10% of boundary layer
! Assumes approximate depth profile of SD from Breivik (2016)
zsqrtpi = SQRT(rpi)
z_two_thirds = 2.0_wp / 3.0_wp
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zthickness = rn_osm_hblfrac*hbl(ji,jj)
z2k_times_thickness = zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
zsqrt_depth = SQRT( z2k_times_thickness )
zexp_depth = EXP( -1.0_wp * z2k_times_thickness )
sustke(ji,jj) = sustke(ji,jj) * ( 1.0_wp - zexp_depth - &
& z_two_thirds * ( zsqrtpi * zsqrt_depth * z2k_times_thickness * ERFC(zsqrt_depth) + &
& 1.0_wp - ( 1.0_wp + z2k_times_thickness ) * zexp_depth ) ) / &
& z2k_times_thickness
END_2D
CASE(2)
! Grant (2020): Match to exponential with same SD and d/dz(Sd) at depth 10% of boundary layer
! Assumes approximate depth profile of SD from Breivik (2016)
zsqrtpi = SQRT(rpi)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zthickness = rn_osm_hblfrac*hbl(ji,jj)
z2k_times_thickness = zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
IF( z2k_times_thickness < 50.0_wp ) THEN
zsqrt_depth = SQRT( z2k_times_thickness )
zexperfc = zsqrtpi * zsqrt_depth * ERFC(zsqrt_depth) * EXP( z2k_times_thickness )
ELSE
! Asymptotic expansion of sqrt(pi)*zsqrt_depth*EXP(z2k_times_thickness)*ERFC(zsqrt_depth) for large
! z2k_times_thickness
! See Abramowitz and Stegun, Eq. 7.1.23
! zexperfc = 1._wp - (1/2)/(z2k_times_thickness) + (3/4)/(z2k_times_thickness**2) - (15/8)/(z2k_times_thickness**3)
zexperfc = ( ( -1.875_wp / z2k_times_thickness + 0.75_wp ) / z2k_times_thickness - 0.5_wp ) / &
& z2k_times_thickness + 1.0_wp
END IF
zf = z2k_times_thickness * ( 1.0_wp / zexperfc - 1.0_wp )
dstokes(ji,jj) = 5.97_wp * zf * dstokes(ji,jj)
sustke(ji,jj) = sustke(ji,jj) * EXP( z2k_times_thickness * ( 1.0_wp / ( 2.0_wp * zf ) - 1.0_wp ) ) * &
& ( 1.0_wp - zexperfc )
END_2D
END SELECT
!
! Langmuir velocity scale (swstrl), La # (sla)
! Mixed scale (svstr), convective velocity scale (swstrc)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! Langmuir velocity scale (swstrl), at T-point
swstrl(ji,jj) = ( sustar(ji,jj) * sustar(ji,jj) * sustke(ji,jj) )**pthird
sla(ji,jj) = MAX( MIN( SQRT( sustar(ji,jj) / ( swstrl(ji,jj) + epsln ) )**3, 4.0_wp ), 0.2_wp )
IF ( sla(ji,jj) > 0.45_wp ) dstokes(ji,jj) = MIN( dstokes(ji,jj), 0.5_wp * hbl(ji,jj) )
! Velocity scale that tends to sustar for large Langmuir numbers
svstr(ji,jj) = ( swstrl(ji,jj)**3 + ( 1.0_wp - EXP( -0.5_wp * sla(ji,jj)**2 ) ) * sustar(ji,jj) * sustar(ji,jj) * &
& sustar(ji,jj) )**pthird
!
! Limit maximum value of Langmuir number as approximate treatment for shear turbulence
! Note sustke and swstrl are not amended
!
! Get convective velocity (swstrc), stabilty scale (shol) and logical conection flag l_conv
IF ( swbav(ji,jj) > 0.0_wp ) THEN
swstrc(ji,jj) = ( 2.0_wp * swbav(ji,jj) * 0.9_wp * hbl(ji,jj) )**pthird
shol(ji,jj) = -0.9_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3 + epsln )
ELSE
swstrc(ji,jj) = 0.0_wp
shol(ji,jj) = -1.0_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3 + epsln )
ENDIF
END_2D
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Mixed-layer model - calculate averages over the boundary layer, and the change in the boundary layer depth
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! BL must be always 4 levels deep.
! For calculation of lateral buoyancy gradients for FK in
! zdf_osm_zmld_horizontal_gradients need halo values for nbld
!
! agn 23/6/20: not clear all this is needed, as hbl checked after it is re-calculated anyway
! ##########################################################################
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
hbl(ji,jj) = MAX(hbl(ji,jj), gdepw(ji,jj,4,Kmm) )
END_2D
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
nbld(ji,jj) = 4
END_2D
DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 5, jpkm1 )
IF ( MAX( hbl(ji,jj), gdepw(ji,jj,4,Kmm) ) >= gdepw(ji,jj,jk,Kmm) ) THEN
nbld(ji,jj) = MIN(mbkt(ji,jj)-2, jk)
ENDIF
END_3D
! ##########################################################################
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zhbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
nmld(ji,jj) = MAX( 3, nbld(ji,jj) - MAX( INT( dh(ji,jj) / e3t(ji,jj,nbld(ji,jj)-1,Kmm) ), 1 ) )
zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
zdh(ji,jj) = zhbl(ji,jj) - zhml(ji,jj)
END_2D
!
! Averages over well-mixed and boundary layer, note BL averages use jk_ext=2 everywhere
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
! Velocity components in frame aligned with surface stress
CALL zdf_osm_velocity_rotation( av_u_ml, av_v_ml )
CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
CALL zdf_osm_velocity_rotation( av_u_bl, av_v_bl )
CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
!
! Determine the state of the OSBL, stable/unstable, shear/no shear
CALL zdf_osm_osbl_state( Kmm, zwb_ent, zwb_min, zshear, zhbl, &
& zhml, zdh )
!
IF ( ln_osm_mle ) THEN
! Fox-Kemper Scheme
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
mld_prof(ji,jj) = 4
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk)
END_3D
jk_nlev(:,:) = mld_prof(A2D(nn_hls-1))
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_mle, av_s_mle, &
& av_b_mle, av_u_mle, av_v_mle )
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zhmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
END_2D
!
! Calculate fairly-well-mixed depth zmld & its index mld_prof + lateral zmld-averaged gradients
CALL zdf_osm_zmld_horizontal_gradients( Kmm, zmld, zdtdx, zdtdy, zdsdx, &
& zdsdy, zdbds_mle )
! Calculate max vertical FK flux zwb_fk & set logical descriptors
CALL zdf_osm_osbl_state_fk( Kmm, zwb_fk, zhbl, zhmle, zwb_ent, &
& zdbds_mle )
! Recalculate hmle, zmle, zvel_mle, zdiff_mle & redefine mld_proc to be index for new hmle
CALL zdf_osm_mle_parameters( Kmm, zmld, zhmle, zvel_mle, zdiff_mle, &
& zdbds_mle, zhbl, zwb0tot )
ELSE ! ln_osm_mle
! FK not selected, Boundary Layer only.
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
IF ( l_conv(ji,jj) .AND. av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
END_2D
ENDIF ! ln_osm_mle
!
!! External gradient below BL needed both with and w/o FK
jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext ) ! ag 19/03
!
! Test if pycnocline well resolved
! DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) Removed with ag 19/03 changes. A change in eddy diffusivity/viscosity
! IF (l_conv(ji,jj) ) THEN should account for this.
! ztmp = 0.2 * zhbl(ji,jj) / e3w(ji,jj,nbld(ji,jj),Kmm)
! IF ( ztmp > 6 ) THEN
! ! pycnocline well resolved
! jk_ext(ji,jj) = 1
! ELSE
! ! pycnocline poorly resolved
! jk_ext(ji,jj) = 0
! ENDIF
! ELSE
! ! Stable conditions
! jk_ext(ji,jj) = 0
! ENDIF
! END_2D
!
! Recalculate bl averages using jk_ext & ml averages .... note no rotation of u & v here..
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml ) ! ag 19/03
!
! Rate of change of hbl
CALL zdf_osm_calculate_dhdt( zdhdt, zhbl, zdh, zwb_ent, zwb_min, &
& zdbdz_bl_ext, zwb_fk_b, zwb_fk, zvel_mle )
! Test if surface boundary layer coupled to bottom
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
l_coup(ji,jj) = .FALSE. ! ag 19/03
zhbl_t(ji,jj) = hbl(ji,jj) + ( zdhdt(ji,jj) - ww(ji,jj,nbld(ji,jj)) ) * rn_Dt ! Certainly need ww here, so subtract it
! Adjustment to represent limiting by ocean bottom
IF ( mbkt(ji,jj) > 2 ) THEN ! To ensure mbkt(ji,jj) - 2 > 0 so no incorrect array access
IF ( zhbl_t(ji,jj) > gdepw(ji, jj,mbkt(ji,jj)-2,Kmm) ) THEN
zhbl_t(ji,jj) = MIN( zhbl_t(ji,jj), gdepw(ji,jj,mbkt(ji,jj)-2,Kmm) ) ! ht(:,:))
l_pyc(ji,jj) = .FALSE.
l_coup(ji,jj) = .TRUE. ! ag 19/03
END IF
END IF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
nmld(ji,jj) = nbld(ji,jj) ! use nmld to hold previous blayer index
nbld(ji,jj) = 4
END_2D
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 4, jpkm1 )
IF ( zhbl_t(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) THEN
nbld(ji,jj) = jk
END IF
END_3D
!
!
! Step through model levels taking account of buoyancy change to determine the effect on dhdt
!
CALL zdf_osm_timestep_hbl( Kmm, zdhdt, zhbl, zhbl_t, zwb_ent, &
& zwb_fk_b )
! Is external level in bounds?
!
! Recalculate BL averages and differences using new BL depth
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
!
CALL zdf_osm_pycnocline_thickness( Kmm, zdh, zhml, zdhdt, zhbl, &
& zwb_ent, zdbdz_bl_ext, zwb_fk_b )
!
! Reset l_pyc before calculating terms in the flux-gradient relationship
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh .OR. nbld(ji,jj) >= mbkt(ji,jj) - 2 .OR. &
& nbld(ji,jj) - nmld(ji,jj) == 1 .OR. zdhdt(ji,jj) < 0.0_wp ) THEN ! ag 19/03
l_pyc(ji,jj) = .FALSE. ! ag 19/03
IF ( nbld(ji,jj) >= mbkt(ji,jj) -2 ) THEN
nmld(ji,jj) = nbld(ji,jj) - 1 ! ag 19/03
zdh(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm) - gdepw(ji,jj,nmld(ji,jj),Kmm) ! ag 19/03
zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm) ! ag 19/03
dh(ji,jj) = zdh(ji,jj) ! ag 19/03
hml(ji,jj) = hbl(ji,jj) - dh(ji,jj) ! ag 19/03
ENDIF
ENDIF ! ag 19/03
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! Limit delta for shallow boundary layers for calculating
dstokes(ji,jj) = MIN ( dstokes(ji,jj), hbl(ji,jj) / 3.0_wp ) ! flux-gradient terms
END_2D
!
!
! Average over the depth of the mixed layer in the convective boundary layer
! jk_ext = nbld - nmld + 1
! Recalculate ML averages and differences using new ML depth
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
!
jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext )
! Rotate mean currents and changes onto wind aligned co-ordinates
CALL zdf_osm_velocity_rotation( av_u_ml, av_v_ml )
CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
CALL zdf_osm_velocity_rotation( av_u_bl, av_v_bl )
CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Eddy viscosity/diffusivity and non-gradient terms in the flux-gradient relationship
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL zdf_osm_diffusivity_viscosity( Kbb, Kmm, zdiffut, zviscos, zhbl, &
& zhml, zdh, zdhdt, zshear, zwb_ent, &
& zwb_min )
!
! Calculate non-gradient components of the flux-gradient relationships
! --------------------------------------------------------------------
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_fgr_terms( Kmm, jk_ext, zhbl, zhml, zdh, &
& zdhdt, zshear, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext, &
& zdiffut, zviscos )
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Need to put in code for contributions that are applied explicitly to
! the prognostic variables
! 1. Entrainment flux
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
! Rotate non-gradient velocity terms back to model reference frame
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
CALL zdf_osm_velocity_rotation( ghamu, ghamv, .FALSE., 2, jk_nlev )
!
! KPP-style Ri# mixing
IF ( ln_kpprimix ) THEN
jkflt = jpk
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( nbld(ji,jj) < jkflt ) jkflt = nbld(ji,jj)
END_2D
DO jk = jkflt+1, jpkm1
! Shear production at uw- and vw-points (energy conserving form)
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
z2du(ji,jj) = 0.5_wp * ( uu(ji,jj,jk-1,Kmm) - uu(ji,jj,jk,Kmm) ) * ( uu(ji,jj,jk-1,Kbb) - uu(ji,jj,jk,Kbb) ) * &
& wumask(ji,jj,jk) / ( e3uw(ji,jj,jk,Kmm) * e3uw(ji,jj,jk,Kbb) )
z2dv(ji,jj) = 0.5_wp * ( vv(ji,jj,jk-1,Kmm) - vv(ji,jj,jk,Kmm) ) * ( vv(ji,jj,jk-1,Kbb) - vv(ji,jj,jk,Kbb) ) * &
& wvmask(ji,jj,jk) / ( e3vw(ji,jj,jk,Kmm) * e3vw(ji,jj,jk,Kbb) )
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( jk > nbld(ji,jj) ) THEN
! Shear prod. at w-point weightened by mask
zesh2 = ( z2du(ji-1,jj) + z2du(ji,jj) ) / MAX( 1.0_wp , umask(ji-1,jj,jk) + umask(ji,jj,jk) ) + &
& ( z2dv(ji,jj-1) + z2dv(ji,jj) ) / MAX( 1.0_wp , vmask(ji,jj-1,jk) + vmask(ji,jj,jk) )
! Local Richardson number
zri = MAX( rn2b(ji,jj,jk), 0.0_wp ) / MAX( zesh2, epsln )
zfri = MIN( zri / rn_riinfty, 1.0_wp )
zfri = ( 1.0_wp - zfri * zfri )
zrimix = zfri * zfri * zfri * wmask(ji, jj, jk)
zdiffut(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), zrimix*rn_difri )
zviscos(ji,jj,jk) = MAX( zviscos(ji,jj,jk), zrimix*rn_difri )
END IF
END_2D
END DO
END IF ! ln_kpprimix = .true.
!
! KPP-style set diffusivity large if unstable below BL
IF ( ln_convmix) THEN
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
DO jk = nbld(ji,jj) + 1, jpkm1
IF ( MIN( rn2(ji,jj,jk), rn2b(ji,jj,jk) ) <= -1e-12_wp ) zdiffut(ji,jj,jk) = MAX( rn_difconv, zdiffut(ji,jj,jk) )
END DO
END_2D
END IF ! ln_convmix = .true.
!
IF ( ln_osm_mle ) THEN ! Set up diffusivity and non-gradient mixing
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_flux(ji,jj) ) THEN ! MLE mixing extends below boundary layer
! Calculate MLE flux contribution from surface fluxes
DO jk = 1, nbld(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / MAX( zhbl(ji,jj), epsln )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) - ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
ghams(ji,jj,jk) = ghams(ji,jj,jk) - sws0(ji,jj) * ( 1.0_wp - znd )
END DO
DO jk = 1, mld_prof(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + sws0(ji,jj) * ( 1.0_wp -znd )
END DO
! Viscosity for MLEs
DO jk = 1, mld_prof(ji,jj)
znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) * &
& ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
END DO
ELSE ! Surface transports limited to OSBL
! Viscosity for MLEs
DO jk = 1, mld_prof(ji,jj)
znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) * &
& ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
END DO
END IF
END_2D
ENDIF
!
! Lateral boundary conditions on zvicos (sign unchanged), needed to caclulate viscosities on u and v grids
! CALL lbc_lnk( 'zdfosm', zviscos(:,:,:), 'W', 1.0_wp )
! GN 25/8: need to change tmask --> wmask
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
p_avt(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), avtb(jk) ) * tmask(ji,jj,jk)
p_avm(ji,jj,jk) = MAX( zviscos(ji,jj,jk), avmb(jk) ) * tmask(ji,jj,jk)
END_3D
!
IF ( ln_dia_osm ) THEN
SELECT CASE (nn_osm_wave)
! Stokes drift set by assumimg onstant La#=0.3 (=0) or Pierson-Moskovitz spectrum (=1)
CASE(0:1)
CALL zdf_osm_iomput( "us_x", tmask(A2D(0),1) * sustke(A2D(0)) * scos_wind(A2D(0)) ) ! x surface Stokes drift
CALL zdf_osm_iomput( "us_y", tmask(A2D(0),1) * sustke(A2D(0)) * ssin_wind(A2D(0)) ) ! y surface Stokes drift
CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 * sustke(A2D(0)) )
! Stokes drift read in from sbcwave (=2).
CASE(2:3)
CALL zdf_osm_iomput( "us_x", ut0sd(A2D(0)) * umask(A2D(0),1) ) ! x surface Stokes drift
CALL zdf_osm_iomput( "us_y", vt0sd(A2D(0)) * vmask(A2D(0),1) ) ! y surface Stokes drift
CALL zdf_osm_iomput( "wmp", wmp(A2D(0)) * tmask(A2D(0),1) ) ! Wave mean period
CALL zdf_osm_iomput( "hsw", hsw(A2D(0)) * tmask(A2D(0),1) ) ! Significant wave height
CALL zdf_osm_iomput( "wmp_NP", ( 2.0_wp * rpi * 1.026_wp / ( 0.877_wp * grav ) ) * & ! Wave mean period from NP
& wndm(A2D(0)) * tmask(A2D(0),1) ) ! spectrum
CALL zdf_osm_iomput( "hsw_NP", ( 0.22_wp / grav ) * wndm(A2D(0))**2 * tmask(A2D(0),1) ) ! Significant wave height from
! ! NP spectrum
CALL zdf_osm_iomput( "wndm", wndm(A2D(0)) * tmask(A2D(0),1) ) ! U_10
CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 * &
& SQRT( ut0sd(A2D(0))**2 + vt0sd(A2D(0))**2 ) )
END SELECT
CALL zdf_osm_iomput( "zwth0", tmask(A2D(0),1) * swth0(A2D(0)) ) ! <Tw_0>
CALL zdf_osm_iomput( "zws0", tmask(A2D(0),1) * sws0(A2D(0)) ) ! <Sw_0>
CALL zdf_osm_iomput( "zwb0", tmask(A2D(0),1) * swb0(A2D(0)) ) ! <bw_0>
CALL zdf_osm_iomput( "zwbav", tmask(A2D(0),1) * swbav(A2D(0)) ) ! Upward BL-avged turb buoyancy flux
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
CALL zdf_osm_iomput( "ibld", tmask(A2D(0),1) * nbld(A2D(0)) ) ! Boundary-layer max k
CALL zdf_osm_iomput( "zdt_bl", tmask(A2D(0),1) * av_dt_bl(A2D(0)) ) ! dt at ml base
CALL zdf_osm_iomput( "zds_bl", tmask(A2D(0),1) * av_ds_bl(A2D(0)) ) ! ds at ml base
CALL zdf_osm_iomput( "zdb_bl", tmask(A2D(0),1) * av_db_bl(A2D(0)) ) ! db at ml base
CALL zdf_osm_iomput( "zdu_bl", tmask(A2D(0),1) * av_du_bl(A2D(0)) ) ! du at ml base
CALL zdf_osm_iomput( "zdv_bl", tmask(A2D(0),1) * av_dv_bl(A2D(0)) ) ! dv at ml base
CALL zdf_osm_iomput( "dh", tmask(A2D(0),1) * dh(A2D(0)) ) ! Initial boundary-layer depth
CALL zdf_osm_iomput( "hml", tmask(A2D(0),1) * hml(A2D(0)) ) ! Initial boundary-layer depth
CALL zdf_osm_iomput( "zdt_ml", tmask(A2D(0),1) * av_dt_ml(A2D(0)) ) ! dt at ml base
CALL zdf_osm_iomput( "zds_ml", tmask(A2D(0),1) * av_ds_ml(A2D(0)) ) ! ds at ml base
CALL zdf_osm_iomput( "zdb_ml", tmask(A2D(0),1) * av_db_ml(A2D(0)) ) ! db at ml base
CALL zdf_osm_iomput( "dstokes", tmask(A2D(0),1) * dstokes(A2D(0)) ) ! Stokes drift penetration depth
CALL zdf_osm_iomput( "zustke", tmask(A2D(0),1) * sustke(A2D(0)) ) ! Stokes drift magnitude at T-points
CALL zdf_osm_iomput( "zwstrc", tmask(A2D(0),1) * swstrc(A2D(0)) ) ! Convective velocity scale
CALL zdf_osm_iomput( "zwstrl", tmask(A2D(0),1) * swstrl(A2D(0)) ) ! Langmuir velocity scale
CALL zdf_osm_iomput( "zustar", tmask(A2D(0),1) * sustar(A2D(0)) ) ! Friction velocity scale
CALL zdf_osm_iomput( "zvstr", tmask(A2D(0),1) * svstr(A2D(0)) ) ! Mixed velocity scale
CALL zdf_osm_iomput( "zla", tmask(A2D(0),1) * sla(A2D(0)) ) ! Langmuir #
CALL zdf_osm_iomput( "wind_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * & ! BL depth internal to zdf_osm routine
& sustar(A2D(0))**3 )
CALL zdf_osm_iomput( "wind_wave_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * &
& sustar(A2D(0))**2 * sustke(A2D(0)) )
CALL zdf_osm_iomput( "zhbl", tmask(A2D(0),1) * zhbl(A2D(0)) ) ! BL depth internal to zdf_osm routine
CALL zdf_osm_iomput( "zhml", tmask(A2D(0),1) * zhml(A2D(0)) ) ! ML depth internal to zdf_osm routine
CALL zdf_osm_iomput( "imld", tmask(A2D(0),1) * nmld(A2D(0)) ) ! Index for ML depth internal to zdf_osm
! ! routine
CALL zdf_osm_iomput( "jp_ext", tmask(A2D(0),1) * jk_ext(A2D(0)) ) ! =1 if pycnocline resolved internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "j_ddh", tmask(A2D(0),1) * n_ddh(A2D(0)) ) ! Index forpyc thicknessh internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "zshear", tmask(A2D(0),1) * zshear(A2D(0)) ) ! Shear production of TKE internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "zdh", tmask(A2D(0),1) * zdh(A2D(0)) ) ! Pyc thicknessh internal to zdf_osm
! ! routine
CALL zdf_osm_iomput( "zhol", tmask(A2D(0),1) * shol(A2D(0)) ) ! ML depth internal to zdf_osm routine
CALL zdf_osm_iomput( "zwb_ent", tmask(A2D(0),1) * zwb_ent(A2D(0)) ) ! Upward turb buoyancy entrainment flux
CALL zdf_osm_iomput( "zt_ml", tmask(A2D(0),1) * av_t_ml(A2D(0)) ) ! Average T in ML
CALL zdf_osm_iomput( "zmld", tmask(A2D(0),1) * zmld(A2D(0)) ) ! FK target layer depth
CALL zdf_osm_iomput( "zwb_fk", tmask(A2D(0),1) * zwb_fk(A2D(0)) ) ! FK b flux
CALL zdf_osm_iomput( "zwb_fk_b", tmask(A2D(0),1) * zwb_fk_b(A2D(0)) ) ! FK b flux averaged over ML
CALL zdf_osm_iomput( "mld_prof", tmask(A2D(0),1) * mld_prof(A2D(0)) ) ! FK layer max k
CALL zdf_osm_iomput( "zdtdx", umask(A2D(0),1) * zdtdx(A2D(0)) ) ! FK dtdx at u-pt
CALL zdf_osm_iomput( "zdtdy", vmask(A2D(0),1) * zdtdy(A2D(0)) ) ! FK dtdy at v-pt
CALL zdf_osm_iomput( "zdsdx", umask(A2D(0),1) * zdsdx(A2D(0)) ) ! FK dtdx at u-pt
CALL zdf_osm_iomput( "zdsdy", vmask(A2D(0),1) * zdsdy(A2D(0)) ) ! FK dsdy at v-pt
CALL zdf_osm_iomput( "dbdx_mle", umask(A2D(0),1) * dbdx_mle(A2D(0)) ) ! FK dbdx at u-pt
CALL zdf_osm_iomput( "dbdy_mle", vmask(A2D(0),1) * dbdy_mle(A2D(0)) ) ! FK dbdy at v-pt
CALL zdf_osm_iomput( "zdiff_mle", tmask(A2D(0),1) * zdiff_mle(A2D(0)) ) ! FK diff in MLE at t-pt
CALL zdf_osm_iomput( "zvel_mle", tmask(A2D(0),1) * zvel_mle(A2D(0)) ) ! FK velocity in MLE at t-pt
END IF
!
! Lateral boundary conditions on ghamu and ghamv, currently on W-grid (sign unchanged), needed to caclulate gham[uv] on u and
! v grids
IF ( .NOT. l_istiled .OR. ntile == nijtile ) THEN ! Finalise ghamu, ghamv, hbl, and hmle only after full domain has been
! ! processed
IF ( nn_hls == 1 ) CALL lbc_lnk( 'zdfosm', ghamu, 'W', 1.0_wp, &
& ghamv, 'W', 1.0_wp )
DO jk = 2, jpkm1