Skip to content
Snippets Groups Projects
zdfosm.F90 212 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
      zb_coup(:,:) = 0.0_wp
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            !
            zvel_sc_pyc = ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 + 4.25_wp * pshear(ji,jj) * phbl(ji,jj) )**pthird
            zvel_sc_ml  = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
            zstab_fac   = ( phml(ji,jj) / zvel_sc_ml *   &
               &            ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP(-3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.25_wp ) )**2
            !
            zdifml_sc(ji,jj) = pp_dif_ml * phml(ji,jj) * zvel_sc_ml
            zvisml_sc(ji,jj) = pp_vis_ml * zdifml_sc(ji,jj)
            !
            IF ( l_pyc(ji,jj) ) THEN
               zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)
               zvispyc_n_sc(ji,jj) = 0.09_wp * zvel_sc_pyc * ( 1.0_wp - phbl(ji,jj) / pdh(ji,jj) )**2 *   &
                  &                  ( 0.005_wp  * ( av_u_ml(ji,jj) - av_u_bl(ji,jj) )**2 +     &
                  &                    0.0075_wp * ( av_v_ml(ji,jj) - av_v_bl(ji,jj) )**2 ) /   &
                  &                  pdh(ji,jj)
               zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) + zvispyc_n_sc(ji,jj) * zstab_fac
               !
               IF ( l_shear(ji,jj) .AND. n_ddh(ji,jj) /= 2 ) THEN
                  ztmp = pp_vispyc_shr * ( pshear(ji,jj) * phbl(ji,jj) )**pthird * phbl(ji,jj)
                  zdifpyc_n_sc(ji,jj) = zdifpyc_n_sc(ji,jj) + ztmp
                  zvispyc_n_sc(ji,jj) = zvispyc_n_sc(ji,jj) + ztmp
               ENDIF
               !
               zdifpyc_s_sc(ji,jj) = pwb_ent(ji,jj) + 0.0025_wp * zvel_sc_pyc * ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) *   &
                  &                                   ( av_b_ml(ji,jj) - av_b_bl(ji,jj) )
               zvispyc_s_sc(ji,jj) = 0.09_wp * ( pwb_min(ji,jj) + 0.0025_wp * zvel_sc_pyc *                 &
                  &                                               ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) *   &
                  &                                               ( av_b_ml(ji,jj) - av_b_bl(ji,jj) ) )
               zdifpyc_s_sc(ji,jj) = 0.09_wp * zdifpyc_s_sc(ji,jj) * zstab_fac
               zvispyc_s_sc(ji,jj) = zvispyc_s_sc(ji,jj) * zstab_fac
               !
               zdifpyc_s_sc(ji,jj) = MAX( zdifpyc_s_sc(ji,jj), -0.5_wp * zdifpyc_n_sc(ji,jj) )
               zvispyc_s_sc(ji,jj) = MAX( zvispyc_s_sc(ji,jj), -0.5_wp * zvispyc_n_sc(ji,jj) )
               
               zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) /   &
                  &                           ( zdifml_sc(ji,jj) + epsln ) )**p2third
               zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / ( zvisml_sc(ji,jj) + epsln )
            ELSE
               zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)   ! ag 19/03
               zdifpyc_s_sc(ji,jj) = 0.0_wp   ! ag 19/03
               zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj)   ! ag 19/03
               zvispyc_s_sc(ji,jj) = 0.0_wp   ! ag 19/03
               IF(l_coup(ji,jj) ) THEN   ! ag 19/03
                  ! code from SUBROUTINE tke_tke zdftke.F90; uses bottom drag velocity rCdU_bot(ji,jj) = -Cd|ub|
                  !     already calculated at T-points in SUBROUTINE zdf_drg from zdfdrg.F90
                  !  Gives friction velocity sqrt bottom drag/rho_0 i.e. u* = SQRT(rCdU_bot*ub)
                  ! wet-cell averaging ..
                  zmsku = 0.5_wp * ( 2.0_wp - umask(ji-1,jj,mbkt(ji,jj)) * umask(ji,jj,mbkt(ji,jj)) )
                  zmskv = 0.5_wp * ( 2.0_wp - vmask(ji,jj-1,mbkt(ji,jj)) * vmask(ji,jj,mbkt(ji,jj)) )
                  zb_coup(ji,jj) = 0.4_wp * SQRT(-1.0_wp * rCdU_bot(ji,jj) *   &
                     &             SQRT(  ( zmsku*( uu(ji,jj,mbkt(ji,jj),Kbb)+uu(ji-1,jj,mbkt(ji,jj),Kbb) ) )**2   &
                     &                  + ( zmskv*( vv(ji,jj,mbkt(ji,jj),Kbb)+vv(ji,jj-1,mbkt(ji,jj),Kbb) ) )**2  ) )
                  
                  zz_b = -1.0_wp * gdepw(ji,jj,mbkt(ji,jj)+1,Kmm)   ! ag 19/03
                  zc_coup_vis(ji,jj) = -0.5_wp * ( 0.5_wp * zvisml_sc(ji,jj) / phml(ji,jj) - zb_coup(ji,jj) ) /   &
                     &                 ( phml(ji,jj) + zz_b )   ! ag 19/03
                  zz_b = -1.0_wp * phml(ji,jj) + gdepw(ji,jj,mbkt(ji,jj)+1,Kmm)   ! ag 19/03
                  zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) /   &
                     &                                  zvisml_sc(ji,jj)   ! ag 19/03
                  zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) /   &
                     &                           zdifml_sc(ji,jj) )**p2third
                  zc_coup_dif(ji,jj) = 0.5_wp * ( -zdifml_sc(ji,jj) / phml(ji,jj) * ( 1.0_wp - zbeta_d_sc(ji,jj) )**1.5_wp +   &
                     &                 1.5_wp * ( zdifml_sc(ji,jj) / phml(ji,jj) ) * zbeta_d_sc(ji,jj) *   &
                     &                          SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) - zb_coup(ji,jj) ) / zz_b   ! ag 19/03
               ELSE   ! ag 19/03
                  zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) /   &
                     &                           ( zdifml_sc(ji,jj) + epsln ) )**p2third   ! ag 19/03
                  zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) /   &
                     &                         ( zvisml_sc(ji,jj) + epsln )   ! ag 19/03
               ENDIF   ! ag 19/03
            ENDIF      ! ag 19/03
         ELSE
            zdifml_sc(ji,jj) = svstr(ji,jj) * phbl(ji,jj) * MAX( EXP ( -1.0_wp * ( shol(ji,jj) / 0.6_wp )**2 ), 0.2_wp)
            zvisml_sc(ji,jj) = zdifml_sc(ji,jj)
         END IF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            DO jk = 2, nmld(ji,jj)   ! Mixed layer diffusivity
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
               pdiffut(ji,jj,jk) = zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_d_sc(ji,jj) * zznd_ml )**1.5
               pviscos(ji,jj,jk) = zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_v_sc(ji,jj) * zznd_ml ) *   &
                  &                ( 1.0_wp - 0.5_wp * zznd_ml**2 )
            END DO
            !
            ! Coupling to bottom
            !
            IF ( l_coup(ji,jj) ) THEN                                                         ! ag 19/03
               DO jk = mbkt(ji,jj), nmld(ji,jj), -1                                           ! ag 19/03
                  zz_b = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) )   ! ag 19/03
                  pviscos(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2    ! ag 19/03
                  pdiffut(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_dif(ji,jj) * zz_b**2    ! ag 19/03
               END DO                                                                         ! ag 19/03
            ENDIF                                                                             ! ag 19/03
            ! Pycnocline
            IF ( l_pyc(ji,jj) ) THEN 
               ! Diffusivity and viscosity profiles in the pycnocline given by
               ! cubic polynomial. Note, if l_pyc TRUE can't be coupled to seabed.
               za_cubic = 0.5_wp
               zb_d_cubic = -1.75_wp * zdifpyc_s_sc(ji,jj) / zdifpyc_n_sc(ji,jj)
               zd_d_cubic = ( pdh(ji,jj) * zdifml_sc(ji,jj) / phml(ji,jj) * SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) *   &
                  &           ( 2.5_wp * zbeta_d_sc(ji,jj) - 1.0_wp ) - 0.85_wp * zdifpyc_s_sc(ji,jj) ) /            &
                  &           MAX( zdifpyc_n_sc(ji,jj), 1.0e-8_wp )
               zd_d_cubic = zd_d_cubic - zb_d_cubic - 2.0_wp * ( 1.0_wp - za_cubic  - zb_d_cubic )
               zc_d_cubic = 1.0_wp - za_cubic - zb_d_cubic - zd_d_cubic
               zb_v_cubic = -1.75_wp * zvispyc_s_sc(ji,jj) / zvispyc_n_sc(ji,jj)
               zd_v_cubic = ( 0.5_wp * zvisml_sc(ji,jj) * pdh(ji,jj) / phml(ji,jj) - 0.85_wp * zvispyc_s_sc(ji,jj) ) /   &
                  &           MAX( zvispyc_n_sc(ji,jj), 1.0e-8_wp )
               zd_v_cubic = zd_v_cubic - zb_v_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_v_cubic )
               zc_v_cubic = 1.0_wp - za_cubic - zb_v_cubic - zd_v_cubic
               DO jk = nmld(ji,jj) , nbld(ji,jj)
                  zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / MAX(pdh(ji,jj), 1.0e-6_wp )
                  ztmp = ( 1.75_wp * zznd_pyc - 0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 )
                  !
                  pdiffut(ji,jj,jk) = zdifpyc_n_sc(ji,jj) *   &
                     &                ( za_cubic + zb_d_cubic * zznd_pyc + zc_d_cubic * zznd_pyc**2 + zd_d_cubic * zznd_pyc**3 )
                  !
                  pdiffut(ji,jj,jk) = pdiffut(ji,jj,jk) + zdifpyc_s_sc(ji,jj) * ztmp
                  pviscos(ji,jj,jk) = zvispyc_n_sc(ji,jj) *   &
                     &                ( za_cubic + zb_v_cubic * zznd_pyc + zc_v_cubic * zznd_pyc**2 + zd_v_cubic * zznd_pyc**3 )
                  pviscos(ji,jj,jk) = pviscos(ji,jj,jk) + zvispyc_s_sc(ji,jj) * ztmp
               END DO
   !                  IF ( pdhdt(ji,jj) > 0._wp ) THEN
   !                     zdiffut(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
   !                     zviscos(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
   !                  ELSE
   !                     zdiffut(ji,jj,nbld(ji,jj)) = 0._wp
   !                     zviscos(ji,jj,nbld(ji,jj)) = 0._wp
   !                  ENDIF
            ENDIF
         ELSE
            ! Stable conditions
            DO jk = 2, nbld(ji,jj)
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
               pdiffut(ji,jj,jk) = 0.75_wp * zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml )**1.5_wp
               pviscos(ji,jj,jk) = 0.375_wp * zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml ) * ( 1.0_wp - zznd_ml**2 )
            END DO
            !
            IF ( pdhdt(ji,jj) > 0.0_wp ) THEN
               pdiffut(ji,jj,nbld(ji,jj)) = MAX( pdhdt(ji,jj), 1.0e-6_wp) * e3w(ji, jj, nbld(ji,jj), Kmm)
               pviscos(ji,jj,nbld(ji,jj)) = pdiffut(ji,jj,nbld(ji,jj))
            ENDIF
         ENDIF   ! End if ( l_conv )
         !
      END_2D
      CALL zdf_osm_iomput( "pb_coup", tmask(A2D(0),1) * zb_coup(A2D(0)) )   ! BBL-coupling velocity scale
      !
   END SUBROUTINE zdf_osm_diffusivity_viscosity

   SUBROUTINE zdf_osm_fgr_terms( Kmm, kp_ext, phbl, phml, pdh,                              &
      &                          pdhdt, pshear, pdtdz_bl_ext, pdsdz_bl_ext, pdbdz_bl_ext,   &
      &                          pdiffut, pviscos )
      !!---------------------------------------------------------------------
      !!                 ***  ROUTINE zdf_osm_fgr_terms ***
      !!
      !! ** Purpose : Compute non-gradient terms in flux-gradient relationship
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kmm            ! Time-level index
      INTEGER,  DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   kp_ext         ! Offset for external level
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pshear         ! Shear production
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdtdz_bl_ext   ! External temperature gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdsdz_bl_ext   ! External salinity gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(in   ) ::   pdiffut        ! t-diffusivity
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(in   ) ::   pviscos        ! Viscosity
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1))     ::   zalpha_pyc   !
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) ::   zdbdz_pyc    ! Parametrised gradient of buoyancy in the pycnocline
      REAL(wp), DIMENSION(:,:,:), ALLOCATABLE ::   z3ddz_pyc_1, z3ddz_pyc_2   ! Pycnocline gradient/shear profiles
      !!
      INTEGER                            ::   ji, jj, jk, jkm_bld, jkf_mld, jkm_mld   ! Loop indices
      INTEGER                            ::   istat                                   ! Memory allocation status
      REAL(wp)                           ::   zznd_d, zznd_ml, zznd_pyc, znd          ! Temporary non-dimensional depths
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_wth_1,zsc_ws_1                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_uw_1, zsc_uw_2                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_vw_1, zsc_vw_2                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   ztau_sc_u                               ! Dissipation timescale at base of WML
      REAL(wp)                           ::   zbuoy_pyc_sc, zdelta_pyc                !
      REAL(wp)                           ::   zl_c,zl_l,zl_eps                        ! Used to calculate turbulence length scale
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   za_cubic, zb_cubic                      ! Coefficients in cubic polynomial specifying
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zc_cubic, zd_cubic                      !    diffusivity in pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwt_pyc_sc_1, zws_pyc_sc_1              !
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zzeta_pyc                               !
      REAL(wp)                           ::   zomega, zvw_max                         !
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zuw_bse,zvw_bse                         ! Momentum, heat, and salinity fluxes
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwth_ent,zws_ent                        !    at the top of the pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_wth_pyc, zsc_ws_pyc                 ! Scales for pycnocline transport term
      REAL(wp)                           ::   ztmp                                    !
      REAL(wp)                           ::   ztgrad, zsgrad, zbgrad                  ! Variables used to calculate pycnocline
      !!                                                                              !    gradients
      REAL(wp)                           ::   zugrad, zvgrad                          ! Variables for calculating pycnocline shear
      REAL(wp)                           ::   zdtdz_pyc                               ! Parametrized gradient of temperature in
      !!                                                                              !    pycnocline
      REAL(wp)                           ::   zdsdz_pyc                               ! Parametrised gradient of salinity in
      !!                                                                              !    pycnocline
      REAL(wp)                           ::   zdudz_pyc                               ! u-shear across the pycnocline
      REAL(wp)                           ::   zdvdz_pyc                               ! v-shear across the pycnocline
      !!----------------------------------------------------------------------
      !
      !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
      !  Pycnocline gradients for scalars and velocity
      !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      CALL zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, zdbdz_pyc, zalpha_pyc, pdh,    &
         &                                       phbl, pdbdz_bl_ext, phml, pdhdt )
      !
      ! Auxiliary indices
      ! -----------------
      jkm_bld = 0
      jkf_mld = jpk
      jkm_mld = 0
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( nbld(ji,jj) > jkm_bld ) jkm_bld = nbld(ji,jj)
         IF ( nmld(ji,jj) < jkf_mld ) jkf_mld = nmld(ji,jj)
         IF ( nmld(ji,jj) > jkm_mld ) jkm_mld = nmld(ji,jj)
      END_2D
      !
      ! Stokes term in scalar flux, flux-gradient relationship
      ! ------------------------------------------------------
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_wth_1(:,:) = swstrl(A2D(nn_hls-1))**3 * swth0(A2D(nn_hls-1)) /   &
            &             ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
         zsc_ws_1(:,:)  = swstrl(A2D(nn_hls-1))**3 * sws0(A2D(nn_hls-1))  /   &
            &             ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
      ELSEWHERE
         zsc_wth_1(:,:) = 2.0_wp * swthav(A2D(nn_hls-1))
         zsc_ws_1(:,:)  = 2.0_wp * swsav(A2D(nn_hls-1))
      ENDWHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( jk <= nmld(ji,jj) ) THEN
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) *   &
                  &                                ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) *   &
                  &                                ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
            END IF
         ELSE   ! Stable conditions
            IF ( jk <= nbld(ji,jj) ) THEN
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) *   &
                  &                                ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) *   &
                  &                                ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
            END IF
         END IF   ! Check on l_conv
      END_3D
      !
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "ghamu_00", wmask(A2D(0),:) * ghamu(A2D(0),:) )
         CALL zdf_osm_iomput( "ghamv_00", wmask(A2D(0),:) * ghamv(A2D(0),:) )
      END IF
      !
      ! Stokes term in flux-gradient relationship (note in zsc_uw_n don't use
      ! svstr since term needs to go to zero as swstrl goes to zero)
      ! ---------------------------------------------------------------------
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_uw_1(:,:) = ( swstrl(A2D(nn_hls-1))**3 +                                                &
            &              0.5_wp * swstrc(A2D(nn_hls-1))**3 )**pthird * sustke(A2D(nn_hls-1)) /   &
            &              MAX( ( 1.0_wp - 1.0_wp * 6.5_wp * sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) ), 0.2_wp )
         zsc_uw_2(:,:) = ( swstrl(A2D(nn_hls-1))**3 +                                                &
            &              0.5_wp * swstrc(A2D(nn_hls-1))**3 )**pthird * sustke(A2D(nn_hls-1)) /   &
            &              MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) + epsln, 0.12_wp )
         zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * phml(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1))**3 *   &
            &            MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) /                    &
            &            ( ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 )**( 2.0_wp / 3.0_wp ) + epsln )
      ELSEWHERE
         zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
         zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * phbl(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1))**3 *   &
            &            MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) / ( svstr(A2D(nn_hls-1))**2 + epsln )
      ENDWHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( jk <= nmld(ji,jj) ) THEN
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + ( -0.05_wp   * EXP( -0.4_wp * zznd_d ) * zsc_uw_1(ji,jj) +     &
                  &                                  0.00125_wp * EXP( -1.0_wp * zznd_d ) * zsc_uw_2(ji,jj) ) *   &
                  &                                ( 1.0_wp - EXP( -2.0_wp * zznd_d ) )
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.65_wp *  0.15_wp * EXP( -1.0_wp * zznd_d ) *                 &
                  &                                ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_vw_1(ji,jj)
            END IF
         ELSE   ! Stable conditions
            IF ( jk <= nbld(ji,jj) ) THEN   ! Corrected to nbld
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.75_wp * 1.3_wp * EXP( -0.5_wp * zznd_d ) *             &
                  &                                ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_uw_1(ji,jj)
            END IF
         END IF
      END_3D
      !
      ! Buoyancy term in flux-gradient relationship [note : includes ROI ratio
      ! (X0.3) and pressure (X0.5)]
      ! ----------------------------------------------------------------------
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_wth_1(:,:) = swbav(A2D(nn_hls-1)) * swth0(A2D(nn_hls-1)) * ( 1.0_wp + EXP( 0.2_wp * shol(A2D(nn_hls-1)) ) ) *   &
            &             phml(A2D(nn_hls-1)) / ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
         zsc_ws_1(:,:)  = swbav(A2D(nn_hls-1)) * sws0(A2D(nn_hls-1))  * ( 1.0_wp + EXP( 0.2_wp * shol(A2D(nn_hls-1)) ) ) *   &
            &             phml(A2D(nn_hls-1)) / ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
      ELSEWHERE
         zsc_wth_1(:,:) = 0.0_wp
         zsc_ws_1(:,:)  = 0.0_wp
      ENDWHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( jk <= nmld(ji,jj) ) THEN
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
               ! Calculate turbulent time scale
               zl_c   = 0.9_wp * ( 1.0_wp - EXP( -5.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) *                         &
                  &     ( 1.0_wp - EXP( -15.0_wp * ( 1.2_wp - zznd_ml ) ) )
               zl_l   = 2.0_wp * ( 1.0_wp - EXP( -2.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) *                         &
                  &     ( 1.0_wp - EXP( -8.0_wp  * ( 1.15_wp - zznd_ml ) ) ) * ( 1.0_wp + dstokes(ji,jj) / phml (ji,jj) )
               zl_eps = zl_l + ( zl_c - zl_l ) / ( 1.0_wp + EXP( -3.0_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**( 3.0_wp / 2.0_wp )
               ! Non-gradient buoyancy terms
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * 0.4_wp * zsc_wth_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * 0.4_wp *  zsc_ws_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
            END IF
         ELSE   ! Stable conditions
            IF ( jk <= nbld(ji,jj) ) THEN
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + zsc_wth_1(ji,jj)
               ghams(ji,jj,jk) = ghams(ji,jj,jk) +  zsc_ws_1(ji,jj)
            END IF
         END IF
      END_3D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
            ztau_sc_u(ji,jj)    = phml(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird *                             &
               &                ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.5_wp )
            zwth_ent(ji,jj)     = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird *   &
               &                ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dt_ml(ji,jj)
            zws_ent(ji,jj)      = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird *   &
               &                ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_ds_ml(ji,jj)
            IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) ) THEN
               zbuoy_pyc_sc        = 2.0_wp * MAX( av_db_ml(ji,jj), 0.0_wp ) / pdh(ji,jj)
               zdelta_pyc          = ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird /   &
                  &                       SQRT( MAX( zbuoy_pyc_sc, ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / pdh(ji,jj)**2 ) )
               zwt_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_dt_ml(ji,jj) / pdh(ji,jj) + pdtdz_bl_ext(ji,jj) ) *   &
                  &                     zdelta_pyc**2 / pdh(ji,jj)
               zws_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_ds_ml(ji,jj) / pdh(ji,jj) + pdsdz_bl_ext(ji,jj) ) *   &
                  &                     zdelta_pyc**2 / pdh(ji,jj)
               zzeta_pyc(ji,jj)    = 0.15_wp - 0.175_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
            END IF
         END IF
      END_2D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
         IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk <= nbld(ji,jj) ) ) THEN
            zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
            ghamt(ji,jj,jk) = ghamt(ji,jj,jk) -                                                                                &
               &              0.045_wp * ( ( zwth_ent(ji,jj) * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) *                 &
               &                         MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
            ghams(ji,jj,jk) = ghams(ji,jj,jk) -                                                                                &
               &              0.045_wp * ( ( zws_ent(ji,jj)  * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) *                 &
               &                         MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
            IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) .AND. nbld(ji,jj) - nmld(ji,jj) > 3 ) THEN
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.05_wp  * zwt_pyc_sc_1(ji,jj) *                              &
                  &                                EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) *        &
                  &                                pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.05_wp  * zws_pyc_sc_1(ji,jj) *                              &
                  &                                EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) *        &
                  &                                pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
            END IF
         END IF   ! End of pycnocline
      END_3D
      !
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "zwth_ent", tmask(A2D(0),1) * zwth_ent(A2D(0)) )   ! Upward turb. temperature entrainment flux
         CALL zdf_osm_iomput( "zws_ent",  tmask(A2D(0),1) * zws_ent(A2D(0))  )   ! Upward turb. salinity entrainment flux
      END IF
      !
      zsc_vw_1(:,:) = 0.0_wp
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_uw_1(:,:) = -1.0_wp * swb0(A2D(nn_hls-1)) * sustar(A2D(nn_hls-1))**2 * phml(A2D(nn_hls-1)) /   &
            &            ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
         zsc_uw_2(:,:) =           swb0(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1))    * phml(A2D(nn_hls-1)) /   &
            &            ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )**( 2.0_wp / 3.0_wp )
      ELSEWHERE
         zsc_uw_1(:,:) = 0.0_wp
      ENDWHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( jk <= nmld(ji,jj) ) THEN
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.3_wp * 0.5_wp *   &
                  &                                ( zsc_uw_1(ji,jj) + 0.125_wp * EXP( -0.5_wp * zznd_d ) *       &
                  &                                  (   1.0_wp - EXP( -0.5_wp * zznd_d ) ) * zsc_uw_2(ji,jj) )
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
            END IF
         ELSE   ! Stable conditions
            IF ( jk <= nbld(ji,jj) ) THEN
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + zsc_uw_1(ji,jj)
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
            END IF
         ENDIF
      END_3D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
            IF ( n_ddh(ji,jj) == 0 ) THEN
               ! Place holding code. Parametrization needs checking for these conditions.
               zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
               zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
               zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
            ELSE
               zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
               zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
               zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
            ENDIF
            zb_cubic(ji,jj) = pdh(ji,jj) / phbl(ji,jj) * suw0(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zuw_bse(ji,jj)
            za_cubic(ji,jj) = zuw_bse(ji,jj) - zb_cubic(ji,jj)
            zvw_max = 0.7_wp * ff_t(ji,jj) * ( sustke(ji,jj) * dstokes(ji,jj) + 0.7_wp * sustar(ji,jj) * phml(ji,jj) )
            zd_cubic(ji,jj) = zvw_max * pdh(ji,jj) / phml(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zvw_bse(ji,jj)
            zc_cubic(ji,jj) = zvw_bse(ji,jj) - zd_cubic(ji,jj)
         END IF
      END_2D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkf_mld, jkm_bld )   ! Need ztau_sc_u to be available. Change to array.
         IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
            zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
            ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zuw_bse(ji,jj) *                 &
               &                                ( za_cubic(ji,jj) * zznd_pyc**2 + zb_cubic(ji,jj) * zznd_pyc**3 ) *   &
               &                                ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
            ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zvw_bse(ji,jj) *                 &
               &                                ( zc_cubic(ji,jj) * zznd_pyc**2 + zd_cubic(ji,jj) * zznd_pyc**3 ) *   &
               &                                ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
         END IF   ! l_conv .AND. l_pyc
      END_3D
      !
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "ghamu_0",    wmask(A2D(0),:) * ghamu(A2D(0),:)  )
         CALL zdf_osm_iomput( "zsc_uw_1_0", tmask(A2D(0),1) * zsc_uw_1(A2D(0)) )
      END IF
      !
      ! Transport term in flux-gradient relationship [note : includes ROI ratio
      ! (X0.3) ]
      ! -----------------------------------------------------------------------
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_wth_1(:,:) = swth0(A2D(nn_hls-1)) / ( 1.0_wp - 0.56_wp * EXP( shol(A2D(nn_hls-1)) ) )
         zsc_ws_1(:,:)  = sws0(A2D(nn_hls-1))  / ( 1.0_wp - 0.56_wp * EXP( shol(A2D(nn_hls-1)) ) )
         WHERE ( l_pyc(A2D(nn_hls-1)) )   ! Pycnocline scales
            zsc_wth_pyc(:,:) = -0.003_wp * swstrc(A2D(nn_hls-1)) * ( 1.0_wp - pdh(A2D(nn_hls-1)) / phbl(A2D(nn_hls-1)) ) *   &
               &               av_dt_ml(A2D(nn_hls-1))
            zsc_ws_pyc(:,:)  = -0.003_wp * swstrc(A2D(nn_hls-1)) * ( 1.0_wp - pdh(A2D(nn_hls-1)) / phbl(A2D(nn_hls-1)) ) *   &
               &               av_ds_ml(A2D(nn_hls-1))
         END WHERE
      ELSEWHERE
         zsc_wth_1(:,:) = 2.0_wp * swthav(A2D(nn_hls-1))
         zsc_ws_1(:,:)  =          sws0(A2D(nn_hls-1))
      END WHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( ( jk > 1 ) .AND. ( jk <= nmld(ji,jj) ) ) THEN
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * zsc_wth_1(ji,jj) *                                  &
                  &                                ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) -   &
                  &                                                        EXP( -6.0_wp * zznd_ml ) ) ) *       &
                  &                                ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * zsc_ws_1(ji,jj) *                                   &
                  &                                ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) -   &
                  &                                EXP( -6.0_wp * zznd_ml ) ) ) * ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
            END IF
            !
            ! may need to comment out lpyc block
            IF ( l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN   ! Pycnocline
               zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
               ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 4.0_wp * zsc_wth_pyc(ji,jj) *   &
                  &                                ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
               ghams(ji,jj,jk) = ghams(ji,jj,jk) + 4.0_wp * zsc_ws_pyc(ji,jj)  *   &
                  &                                ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
            END IF
         ELSE
            IF( pdhdt(ji,jj) > 0. ) THEN
               IF ( ( jk > 1 ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
                  zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
                  znd    = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
                  ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) +   &
                     7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_wth_1(ji,jj)
                  ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) +   &
                     7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_ws_1(ji,jj)
               END IF
            ENDIF
         ENDIF
      END_3D
      !
      WHERE ( l_conv(A2D(nn_hls-1)) )
         zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
         zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1)) * phml(A2D(nn_hls-1))
      ELSEWHERE
         zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
         zsc_uw_2(:,:) = ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * 2.0_wp ) ) ) * ( 1.0_wp - EXP( -4.0_wp * 2.0_wp ) ) *   &
            &            zsc_uw_1(:,:)
         zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1)) * phbl(A2D(nn_hls-1))
         zsc_vw_2(:,:) = -0.11_wp * SIN( 3.14159_wp * ( 2.0_wp + 0.4_wp ) ) * EXP( -1.0_wp * ( 1.5_wp + 2.0_wp )**2 ) *   &
            &            zsc_vw_1(:,:)
      ENDWHERE
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
         IF ( l_conv(ji,jj) ) THEN
            IF ( jk <= nmld(ji,jj) ) THEN
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
               zznd_d  = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) +   &
                  &              0.3_wp * ( -2.0_wp + 2.5_wp * ( 1.0_wp + 0.1_wp * zznd_ml**4 ) - EXP( -8.0_wp * zznd_ml ) ) *   &
                  &              zsc_uw_1(ji,jj)
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) +   &
                  &              0.3_wp * 0.1_wp * ( EXP( -1.0_wp * zznd_d ) + EXP( -5.0_wp * ( 1.0_wp - zznd_ml ) ) ) *   &
                  &              zsc_vw_1(ji,jj)
            END IF
         ELSE
            IF ( jk <= nbld(ji,jj) ) THEN
               znd    = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
               zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
               IF ( zznd_d <= 2.0_wp ) THEN
                  ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp *                                              &
                     &                                ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * zznd_d ) ) *   &
                     &                                  ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) ) * zsc_uw_1(ji,jj)
               ELSE
                  ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp *   &
                     &                                ( 1.0_wp - EXP( -5.0_wp * ( 1.0_wp - znd ) ) ) * zsc_uw_2(ji,jj)
               ENDIF
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * SIN( 3.14159_wp * ( 0.65_wp * zznd_d ) ) *   &
                  &                                EXP( -0.25_wp * zznd_d**2 ) * zsc_vw_1(ji,jj)
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * EXP( -5.0 * ( 1.0 - znd ) ) *   &
                  &                                ( 1.0 - EXP( -20.0 * ( 1.0 - znd ) ) ) * zsc_vw_2(ji,jj)
            END IF
         END IF
      END_3D
      !
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "ghamu_f",    wmask(A2D(0),:) * ghamu(A2D(0),:)  )
         CALL zdf_osm_iomput( "ghamv_f",    wmask(A2D(0),:) * ghamv(A2D(0),:)  )
         CALL zdf_osm_iomput( "zsc_uw_1_f", tmask(A2D(0),1) * zsc_uw_1(A2D(0)) )
         CALL zdf_osm_iomput( "zsc_vw_1_f", tmask(A2D(0),1) * zsc_vw_1(A2D(0)) )
         CALL zdf_osm_iomput( "zsc_uw_2_f", tmask(A2D(0),1) * zsc_uw_2(A2D(0)) )
         CALL zdf_osm_iomput( "zsc_vw_2_f", tmask(A2D(0),1) * zsc_vw_2(A2D(0)) )
      END IF
      !
      ! Make surface forced velocity non-gradient terms go to zero at the base
      ! of the mixed layer.
      !
      ! Make surface forced velocity non-gradient terms go to zero at the base
      ! of the boundary layer.
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
         IF ( ( .NOT. l_conv(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
            znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / phbl(ji,jj)   ! ALMG to think about
            IF ( znd >= 0.0_wp ) THEN
               ghamu(ji,jj,jk) = ghamu(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
               ghamv(ji,jj,jk) = ghamv(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
            ELSE
               ghamu(ji,jj,jk) = 0.0_wp
               ghamv(ji,jj,jk) = 0.0_wp
            ENDIF
         END IF
      END_3D
      !
      ! Pynocline contributions
      !
      IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN   ! Allocate arrays for output of pycnocline gradient/shear profiles
         ALLOCATE( z3ddz_pyc_1(A2D(nn_hls),jpk), z3ddz_pyc_2(A2D(nn_hls),jpk), STAT=istat )
         IF ( istat /= 0 ) CALL ctl_stop( 'zdf_osm: failed to allocate temporary arrays' )
         z3ddz_pyc_1(:,:,:) = 0.0_wp
         z3ddz_pyc_2(:,:,:) = 0.0_wp
      END IF
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
         IF ( l_conv (ji,jj) ) THEN
            ! Unstable conditions. Shouldn;t be needed with no pycnocline code.
            !                  zugrad = 0.7 * av_du_ml(ji,jj) / zdh(ji,jj) + 0.3 * zustar(ji,jj)*zustar(ji,jj) / &
            !                       &      ( ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird * zhml(ji,jj) ) * &
            !                      &      MIN(zla(ji,jj)**(8.0/3.0) + epsln, 0.12 ))
            !Alan is this right?
            !                  zvgrad = ( 0.7 * av_dv_ml(ji,jj) + &
            !                       &    2.0 * ff_t(ji,jj) * zustke(ji,jj) * dstokes(ji,jj) / &
            !                       &          ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird  + epsln ) &
            !                       &      )/ (zdh(ji,jj)  + epsln )
            !                  DO jk = 2, nbld(ji,jj) - 1 + ibld_ext
            !                     znd = -( gdepw(ji,jj,jk,Kmm) - zhbl(ji,jj) ) / (zdh(ji,jj) + epsln ) - zzeta_v
            !                     IF ( znd <= 0.0 ) THEN
            !                        zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( 3.0 * znd )
            !                        zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( 3.0 * znd )
            !                     ELSE
            !                        zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( -2.0 * znd )
            !                        zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( -2.0 * znd )
            !                     ENDIF
            !                  END DO
         ELSE   ! Stable conditions
            IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
               ! Pycnocline profile only defined when depth steady of increasing.
               IF ( pdhdt(ji,jj) > 0.0_wp ) THEN   ! Depth increasing, or steady.
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     IF ( shol(ji,jj) >= 0.5_wp ) THEN   ! Very stable - 'thick' pycnocline
                        ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
                        ztgrad = av_dt_bl(ji,jj) * ztmp
                        zsgrad = av_ds_bl(ji,jj) * ztmp
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        IF ( jk <= nbld(ji,jj) ) THEN
                           znd = gdepw(ji,jj,jk,Kmm) * ztmp
                           zdtdz_pyc =  ztgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
                           zdsdz_pyc =  zsgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
                           ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
                           ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
                           IF ( ln_dia_pyc_scl ) THEN
                              z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
                              z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
                           END IF
                        END IF
                     ELSE   ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
                        ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
                        ztgrad = av_dt_bl(ji,jj) * ztmp
                        zsgrad = av_ds_bl(ji,jj) * ztmp
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        IF ( jk <= nbld(ji,jj) ) THEN
                           znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
                           zdtdz_pyc =  ztgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
                           zdsdz_pyc =  zsgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
                           ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
                           ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
                           IF ( ln_dia_pyc_scl ) THEN
                              z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
                              z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
                           END IF
                        END IF
                     ENDIF   ! IF (shol >=0.5)
                  ENDIF      ! IF (av_db_bl> 0.)
               ENDIF         ! IF (zdhdt >= 0) zdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
               !             !    intialized to zero
            END IF
         END IF
      END_3D
      IF ( ln_dia_pyc_scl ) THEN   ! Output of pycnocline gradient profiles
         CALL zdf_osm_iomput( "zdtdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_1(A2D(0),:) )
         CALL zdf_osm_iomput( "zdsdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_2(A2D(0),:) )
      END IF
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
         IF ( .NOT. l_conv (ji,jj) ) THEN
            IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
               zugrad = 3.25_wp * av_du_bl(ji,jj) / phbl(ji,jj)
               zvgrad = 2.75_wp * av_dv_bl(ji,jj) / phbl(ji,jj)
               IF ( jk <= nbld(ji,jj) ) THEN
                  znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
                  IF ( znd < 1.0 ) THEN
                     zdudz_pyc = zugrad * EXP( -40.0_wp * ( znd - 1.0_wp )**2 )
                  ELSE
                     zdudz_pyc = zugrad * EXP( -20.0_wp * ( znd - 1.0_wp )**2 )
                  ENDIF
                  zdvdz_pyc = zvgrad * EXP( -20.0_wp * ( znd - 0.85_wp )**2 )
                  ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + pviscos(ji,jj,jk) * zdudz_pyc
                  ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + pviscos(ji,jj,jk) * zdvdz_pyc
                  IF ( ln_dia_pyc_shr ) THEN
                     z3ddz_pyc_1(ji,jj,jk) = zdudz_pyc
                     z3ddz_pyc_2(ji,jj,jk) = zdvdz_pyc
                  END IF
               END IF
            END IF
         END IF
      END_3D
      IF ( ln_dia_pyc_shr ) THEN   ! Output of pycnocline shear profiles
         CALL zdf_osm_iomput( "zdudz_pyc", wmask(A2D(0),:) * z3ddz_pyc_1(A2D(0),:) )
         CALL zdf_osm_iomput( "zdvdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_2(A2D(0),:) )
      END IF
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "ghamu_b", wmask(A2D(0),:) * ghamu(A2D(0),:) )
         CALL zdf_osm_iomput( "ghamv_b", wmask(A2D(0),:) * ghamv(A2D(0),:) )
      END IF
      IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN   ! Deallocate arrays used for output of pycnocline gradient/shear profiles
         DEALLOCATE( z3ddz_pyc_1, z3ddz_pyc_2 )
      END IF
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         ghamt(ji,jj,nbld(ji,jj)) = 0.0_wp
         ghams(ji,jj,nbld(ji,jj)) = 0.0_wp
         ghamu(ji,jj,nbld(ji,jj)) = 0.0_wp
         ghamv(ji,jj,nbld(ji,jj)) = 0.0_wp
      END_2D
      !
      IF ( ln_dia_osm ) THEN
         CALL zdf_osm_iomput( "ghamu_1", wmask(A2D(0),:) * ghamu(A2D(0),:)   )
         CALL zdf_osm_iomput( "ghamv_1", wmask(A2D(0),:) * ghamv(A2D(0),:)   )
         CALL zdf_osm_iomput( "zviscos", wmask(A2D(0),:) * pviscos(A2D(0),:) )
      END IF
      !
   END SUBROUTINE zdf_osm_fgr_terms

   SUBROUTINE zdf_osm_zmld_horizontal_gradients( Kmm, pmld, pdtdx, pdtdy, pdsdx,   &
      &                                          pdsdy, pdbds_mle )
      !!----------------------------------------------------------------------
      !!          ***  ROUTINE zdf_osm_zmld_horizontal_gradients  ***
      !!
      !! ** Purpose : Calculates horizontal gradients of buoyancy for use with
      !!              Fox-Kemper parametrization
      !!
      !! ** Method  :
      !!
      !! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
      !!             Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm          ! Time-level index
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(  out) ::   pmld         ! == Estimated FK BLD used for MLE horizontal gradients == !
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(inout) ::   pdtdx        ! Horizontal gradient for Fox-Kemper parametrization
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(inout) ::   pdtdy        ! Horizontal gradient for Fox-Kemper parametrization
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(inout) ::   pdsdx        ! Horizontal gradient for Fox-Kemper parametrization
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(inout) ::   pdsdy        ! Horizontal gradient for Fox-Kemper parametrization
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pdbds_mle    ! Magnitude of horizontal buoyancy gradient
      !!
      INTEGER                               ::   ji, jj, jk   ! Dummy loop indices
      INTEGER,  DIMENSION(A2D(nn_hls))      ::   jk_mld_prof  ! Base level of MLE layer
      INTEGER                               ::   ikt, ikmax   ! Local integers      
      REAL(wp)                              ::   zc
      REAL(wp)                              ::   zN2_c        ! Local buoyancy difference from 10m value
      REAL(wp), DIMENSION(A2D(nn_hls))      ::   ztm
      REAL(wp), DIMENSION(A2D(nn_hls))      ::   zsm
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) ::   ztsm_midu
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) ::   ztsm_midv
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) ::   zabu
      REAL(wp), DIMENSION(A2D(nn_hls),jpts) ::   zabv
      REAL(wp), DIMENSION(A2D(nn_hls))      ::   zmld_midu
      REAL(wp), DIMENSION(A2D(nn_hls))      ::   zmld_midv
      !!----------------------------------------------------------------------
      !
      ! ==  MLD used for MLE  ==!
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         jk_mld_prof(ji,jj) = nlb10    ! Initialization to the number of w ocean point
         pmld(ji,jj)        = 0.0_wp   ! Here hmlp used as a dummy variable, integrating vertically N^2
      END_2D
      zN2_c = grav * rn_osm_mle_rho_c * r1_rho0   ! Convert density criteria into N^2 criteria
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, nlb10, jpkm1 )
         ikt = mbkt(ji,jj)
         pmld(ji,jj) = pmld(ji,jj) + MAX( rn2b(ji,jj,jk), 0.0_wp ) * e3w(ji,jj,jk,Kmm)
         IF( pmld(ji,jj) < zN2_c ) jk_mld_prof(ji,jj) = MIN( jk , ikt ) + 1   ! Mixed layer level
      END_3D
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         jk_mld_prof(ji,jj) = MAX( jk_mld_prof(ji,jj), nbld(ji,jj) )   ! Ensure jk_mld_prof .ge. nbld
         pmld(ji,jj)     = gdepw(ji,jj,jk_mld_prof(ji,jj),Kmm)
      END_2D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         mld_prof(ji,jj) = jk_mld_prof(ji,jj)
      END_2D
      !
      ikmax = MIN( MAXVAL( jk_mld_prof(A2D(nn_hls)) ), jpkm1 )   ! Max level of the computation
      ztm(:,:) = 0.0_wp
      zsm(:,:) = 0.0_wp
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, ikmax )
         zc = e3t(ji,jj,jk,Kmm) * REAL( MIN( MAX( 0, jk_mld_prof(ji,jj) - jk ), 1  ), KIND=wp )   ! zc being 0 outside the ML
         !                                                                                        !    t-points
         ztm(ji,jj) = ztm(ji,jj) + zc * ts(ji,jj,jk,jp_tem,Kmm)
         zsm(ji,jj) = zsm(ji,jj) + zc * ts(ji,jj,jk,jp_sal,Kmm)
      END_3D
      ! Average temperature and salinity
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ztm(ji,jj) = ztm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
         zsm(ji,jj) = zsm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
      END_2D
      ! Calculate horizontal gradients at u & v points
      zmld_midu(:,:)   =  0.0_wp
      ztsm_midu(:,:,:) = 10.0_wp
      DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdtdx(ji,jj)            = ( ztm(ji+1,jj) - ztm(ji,jj) )  * umask(ji,jj,1) / e1u(ji,jj)
         pdsdx(ji,jj)            = ( zsm(ji+1,jj) - zsm(ji,jj) )  * umask(ji,jj,1) / e1u(ji,jj)
         zmld_midu(ji,jj)        = 0.25_wp * ( pmld(ji+1,jj) + pmld(ji,jj))
         ztsm_midu(ji,jj,jp_tem) =  0.5_wp * ( ztm( ji+1,jj)  + ztm( ji,jj) )
         ztsm_midu(ji,jj,jp_sal) =  0.5_wp * ( zsm( ji+1,jj)  + zsm( ji,jj) )
      END_2D
      zmld_midv(:,:)   =  0.0_wp
      ztsm_midv(:,:,:) = 10.0_wp
      DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
         pdtdy(ji,jj)            = ( ztm(ji,jj+1) - ztm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
         pdsdy(ji,jj)            = ( zsm(ji,jj+1) - zsm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
         zmld_midv(ji,jj)        = 0.25_wp * ( pmld(ji,jj+1) + pmld( ji,jj) )
         ztsm_midv(ji,jj,jp_tem) =  0.5_wp * ( ztm( ji,jj+1)  + ztm( ji,jj) )
         ztsm_midv(ji,jj,jp_sal) =  0.5_wp * ( zsm( ji,jj+1)  + zsm( ji,jj) )
      END_2D
      CALL eos_rab( ztsm_midu, zmld_midu, zabu, Kmm )
      CALL eos_rab( ztsm_midv, zmld_midv, zabv, Kmm )
      DO_2D_OVR( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
         dbdx_mle(ji,jj) = grav * ( pdtdx(ji,jj) * zabu(ji,jj,jp_tem) - pdsdx(ji,jj) * zabu(ji,jj,jp_sal) )
      END_2D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
         dbdy_mle(ji,jj) = grav * ( pdtdy(ji,jj) * zabv(ji,jj,jp_tem) - pdsdy(ji,jj) * zabv(ji,jj,jp_sal) )
      END_2D
      DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdbds_mle(ji,jj) = SQRT( 0.5_wp * ( dbdx_mle(ji,  jj) * dbdx_mle(ji,  jj) + dbdy_mle(ji,jj  ) * dbdy_mle(ji,jj  ) +   &
            &                                dbdx_mle(ji-1,jj) * dbdx_mle(ji-1,jj) + dbdy_mle(ji,jj-1) * dbdy_mle(ji,jj-1) ) )
      END_2D
      !
   END SUBROUTINE zdf_osm_zmld_horizontal_gradients

   SUBROUTINE zdf_osm_osbl_state_fk( Kmm, pwb_fk, phbl, phmle, pwb_ent,   &
      &                              pdbds_mle )
      !!---------------------------------------------------------------------
      !!               ***  ROUTINE zdf_osm_osbl_state_fk  ***
      !!
      !! ** Purpose : Determines the state of the OSBL and MLE layer. Info is
      !!              returned in the logicals l_pyc, l_flux and ldmle. Used
      !!              with Fox-Kemper scheme.
      !!                l_pyc  :: determines whether pycnocline flux-grad
      !!                          relationship needs to be determined
      !!                l_flux :: determines whether effects of surface flux
      !!                          extend below the base of the OSBL
      !!                ldmle  :: determines whether the layer with MLE is
      !!                          increasing with time or if base is relaxing
      !!                          towards hbl
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------      
      INTEGER,                            INTENT(in   ) ::   Kmm         ! Time-level index
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pwb_fk
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl        ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phmle       ! MLE depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent     ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdbds_mle   ! Magnitude of horizontal buoyancy gradient
      !!
      INTEGER                            ::   ji, jj, jk        ! Dummy loop indices
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   znd_param
      REAL(wp)                           ::   zthermal, zbeta
      REAL(wp)                           ::   zbuoy
      REAL(wp)                           ::   ztmp
      REAL(wp)                           ::   zpe_mle_layer
      REAL(wp)                           ::   zpe_mle_ref
      REAL(wp)                           ::   zdbdz_mle_int
      !!----------------------------------------------------------------------      
      !
      znd_param(:,:) = 0.0_wp
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         ztmp =  r1_ft(ji,jj) *  MIN( 111.e3_wp , e1u(ji,jj) ) / rn_osm_mle_lf
         pwb_fk(ji,jj) = rn_osm_mle_ce * hmle(ji,jj) * hmle(ji,jj) * ztmp * pdbds_mle(ji,jj) * pdbds_mle(ji,jj)
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_conv(ji,jj) ) THEN
            IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN
               av_t_mle(ji,jj) = ( av_t_mle(ji,jj) * phmle(ji,jj) - av_t_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
               av_s_mle(ji,jj) = ( av_s_mle(ji,jj) * phmle(ji,jj) - av_s_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
               av_b_mle(ji,jj) = ( av_b_mle(ji,jj) * phmle(ji,jj) - av_b_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
               zdbdz_mle_int = ( av_b_bl(ji,jj) - ( 2.0_wp * av_b_mle(ji,jj) - av_b_bl(ji,jj) ) ) / ( phmle(ji,jj) - phbl(ji,jj) )
               ! Calculate potential energies of actual profile and reference profile
               zpe_mle_layer = 0.0_wp
               zpe_mle_ref   = 0.0_wp
               zthermal = rab_n(ji,jj,1,jp_tem)
               zbeta    = rab_n(ji,jj,1,jp_sal)
               DO jk = nbld(ji,jj), mld_prof(ji,jj)
                  zbuoy         = grav * ( zthermal * ts(ji,jj,jk,jp_tem,Kmm) - zbeta * ts(ji,jj,jk,jp_sal,Kmm) )
                  zpe_mle_layer = zpe_mle_layer + zbuoy * gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
                  zpe_mle_ref   = zpe_mle_ref   + ( av_b_bl(ji,jj) - zdbdz_mle_int * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) ) *   &
                     &                            gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
               END DO
               ! Non-dimensional parameter to diagnose the presence of thermocline
               znd_param(ji,jj) = ( zpe_mle_layer - zpe_mle_ref ) * ABS( ff_t(ji,jj) ) /   &
                  &               ( MAX( pwb_fk(ji,jj), 1e-10 ) * phmle(ji,jj) )
            END IF
         END IF
         !
      END_2D
      !
      ! Diagnosis
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_conv(ji,jj) ) THEN
            IF ( -2.0_wp * pwb_fk(ji,jj) / pwb_ent(ji,jj) > 0.5_wp ) THEN
               IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN   ! MLE layer growing
                  IF ( znd_param (ji,jj) > 100.0_wp ) THEN   ! Thermocline present
                     l_flux(ji,jj) = .FALSE.
                     l_mle(ji,jj)  = .FALSE.
                  ELSE   ! Thermocline not present
                     l_flux(ji,jj) = .TRUE.
                     l_mle(ji,jj)  = .TRUE.
                  ENDIF  ! znd_param > 100
                  !
                  IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN
                     l_pyc(ji,jj) = .FALSE.
                  ELSE
                     l_pyc(ji,jj) = .TRUE.
                  ENDIF
               ELSE   ! MLE layer restricted to OSBL or just below
                  IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN   ! Weak stratification MLE layer can grow
                     l_pyc(ji,jj)  = .FALSE.
                     l_flux(ji,jj) = .TRUE.
                     l_mle(ji,jj)  = .TRUE.
                  ELSE   ! Strong stratification
                     l_pyc(ji,jj)  = .TRUE.
                     l_flux(ji,jj) = .FALSE.
                     l_mle(ji,jj)  = .FALSE.
                  END IF   ! av_db_bl < rn_mle_thresh_bl and
               END IF   ! phmle > 1.2 phbl
            ELSE
               l_pyc(ji,jj)  = .TRUE.
               l_flux(ji,jj) = .FALSE.
               l_mle(ji,jj)  = .FALSE.
               IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
            END IF   !  -2.0 * pwb_fk(ji,jj) / pwb_ent > 0.5
         ELSE   ! Stable Boundary Layer
            l_pyc(ji,jj)  = .FALSE.
            l_flux(ji,jj) = .FALSE.
            l_mle(ji,jj)  = .FALSE.
         END IF   ! l_conv
         !
      END_2D
      !
   END SUBROUTINE zdf_osm_osbl_state_fk

   SUBROUTINE zdf_osm_mle_parameters( Kmm, pmld, phmle, pvel_mle, pdiff_mle,   &
      &                               pdbds_mle, phbl, pwb0tot )
      !!----------------------------------------------------------------------
      !!               ***  ROUTINE zdf_osm_mle_parameters  ***
      !!
      !! ** Purpose : Timesteps the mixed layer eddy depth, hmle and calculates
      !!              the mixed layer eddy fluxes for buoyancy, heat and
      !!              salinity.
      !!
      !! ** Method  :
      !!
      !! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
      !!             Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm         ! Time-level index
      REAL(wp), DIMENSION(A2D(nn_hls)),   INTENT(in   ) ::   pmld        ! == Estimated FK BLD used for MLE horiz gradients == !
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   phmle       ! MLE depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pvel_mle    ! Velocity scale for dhdt with stable ML and FK
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pdiff_mle   ! Extra MLE vertical diff
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdbds_mle   ! Magnitude of horizontal buoyancy gradient
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl        ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb0tot     ! Total surface buoyancy flux including insolation
      !!
      INTEGER  ::   ji, jj, jk   ! Dummy loop indices
      REAL(wp) ::   ztmp
      REAL(wp) ::   zdbdz
      REAL(wp) ::   zdtdz
      REAL(wp) ::   zdsdz
      REAL(wp) ::   zthermal
      REAL(wp) ::   zbeta
      REAL(wp) ::   zbuoy
      REAL(wp) ::   zdb_mle
      !!----------------------------------------------------------------------
      !
      ! Calculate vertical buoyancy, heat and salinity fluxes due to MLE
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            ztmp =  r1_ft(ji,jj) * MIN( 111e3_wp, e1u(ji,jj) ) / rn_osm_mle_lf
            ! This velocity scale, defined in Fox-Kemper et al (2008), is needed for calculating dhdt
            pvel_mle(ji,jj)  = pdbds_mle(ji,jj) * ztmp * hmle(ji,jj) * tmask(ji,jj,1)
            pdiff_mle(ji,jj) = 5e-4_wp * rn_osm_mle_ce * ztmp * pdbds_mle(ji,jj) * phmle(ji,jj)**2
         END IF
      END_2D
      ! Timestep mixed layer eddy depth
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_mle(ji,jj) ) THEN   ! MLE layer growing
            ! Buoyancy gradient at base of MLE layer
            zthermal = rab_n(ji,jj,1,jp_tem)
            zbeta    = rab_n(ji,jj,1,jp_sal)
            zbuoy = grav * ( zthermal * ts(ji,jj,mld_prof(ji,jj)+2,jp_tem,Kmm) -   &
               &             zbeta    * ts(ji,jj,mld_prof(ji,jj)+2,jp_sal,Kmm) )
            zdb_mle = av_b_bl(ji,jj) - zbuoy
            ! Timestep hmle
            hmle(ji,jj) = hmle(ji,jj) + pwb0tot(ji,jj) * rn_Dt / zdb_mle
         ELSE
            IF ( phmle(ji,jj) > phbl(ji,jj) ) THEN
               hmle(ji,jj) = hmle(ji,jj) - ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
            ELSE
               hmle(ji,jj) = hmle(ji,jj) - 10.0_wp * ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
            END IF
         END IF
         hmle(ji,jj) = MAX( MIN( hmle(ji,jj), ht(ji,jj) ), gdepw(ji,jj,4,Kmm) )
         IF ( ln_osm_hmle_limit ) hmle(ji,jj) = MIN( hmle(ji,jj), rn_osm_hmle_limit*hbl(ji,jj) )
         hmle(ji,jj) = pmld(ji,jj)   ! For now try just set hmle to pmld
      END_2D
      !
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
         IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk )
      END_3D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         phmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
      END_2D
      !
   END SUBROUTINE zdf_osm_mle_parameters

   SUBROUTINE zdf_osm_init( Kmm )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE zdf_osm_init  ***
      !!
      !! ** Purpose :   Initialization of the vertical eddy diffivity and
      !!      viscosity when using a osm turbulent closure scheme
      !!
      !! ** Method  :   Read the namosm namelist and check the parameters
      !!      called at the first timestep (nit000)
      !!
      !! ** input   :   Namlists namzdf_osm and namosm_mle
      !!
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in   ) ::   Kmm   ! Time level
      !!